期刊文献+

半无限优化的光滑化拟Newton法及其在最优潮流中的应用

Smoothing Quasi-Newton Method for Solving Semi-Infinite Programming with Application to OPF Problems
下载PDF
导出
摘要 提出求解半无限优化(SIP)问题的一类新算法—光滑化拟Newton法.基于非线性互补函数(non linearcomp lem entary prob lem-NCP function),转化SIP问题的KKT系统为非光滑方程组,设计光滑化拟Newton法求解该方程系统.该方法的特点是在每步迭代中只需求解一个线性方程组系统,且算法具有较好的全局与局部超线性收敛性.利用该方法求解电力系统暂态稳定约束的最优潮流(optim al power flows w ith transient stab ility constraints-OTS)问题,计算结果显示该算法的有效性. This paper presents a smoothing Quasi-Newton method for solving the semi-infinite programming(SIP). Based on the nonlinear complementary problem(NCP) function, the KKT system of the SIP problem is reformulated to a system of nonsmooth equations. A smoothing Quasi-Newton method is designed to solve this system. The remarkable characteristic of the method is that it only solves a system of linear equations at each iteration; and it enjoys nice global and locally superlinear convergence. Finally, the algorithm is used to solve the optimal power flows with transient stability constraints(OTS) in power systems. Numerical results show the effectiveness of the proposed approach.
出处 《长沙电力学院学报(自然科学版)》 2006年第4期1-6,共6页 JOurnal of Changsha University of electric Power:Natural Science
基金 国家自然科学基金(60474070) 湖南省自然科学基金(04JJ3031)
关键词 半无限优化 光滑化拟Newton法 暂态稳定约束 最优潮流 收敛性 semi-Infinite programming smoothing quasi-newton methods transient stability constraint optimal power flow convergence
  • 相关文献

参考文献9

  • 1Qi L,Wu SOON-YI,Zhou G.Semismooth Newton Methods for Solving Semi-lnfinite Programming Problems[J].Journal of Global Optimization,2003,27(89):215-232.
  • 2Qi L,Ling C,Tong X J,et al.A smoothing projected Newton-type algorithm for semi-infinite Programming[D].Hong Kong:Hong Kong Polytechnic University,2004.
  • 3Wu Soon Yi,Li Dong Hui,Qi Liqun,et al.An iterative Method for solving KKT system of the semi-infinite programming[J].Optimization Methods and Software,2005,20(9):629-643.
  • 4Li D H,Qi L,Tam J,et al.A smoothing Newton method for semi-infinite programming[J].Journal of Global Optimization,2004,30 (15):169-194.
  • 5Qi L,Yang Y.A globally and superlinearly convergent SQP algorithm for nonlinear constrained optimization[J].Journal of Global Optimization,2001,21 (16):157-184.
  • 6Li Donghui,MaSao Fukushima.Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems[J].Computational Optimization and Application,2000,17(4):203-230.
  • 7TEO K L,Yang X Q,Jennings L S.Computational Discretization Algorithms for Functional Inequality Constrained Optimization[J].Annals of Operations Research,2000,98 (1):215-234.
  • 8杨新林,孙元章,王海风.考虑暂态稳定性约束的最优潮流[J].电力系统自动化,2003,27(14):13-17. 被引量:29
  • 9Chen Luonan,Yasuyuki,Hiroshi Okamoto,et al.Optimal Operation Solutions of Power Systems with Transient Stability Constraints[J].Fundamental Theory and Applications,2001,48(3):237-328.

二级参考文献12

  • 1Carpentier J. Optimal Power Flows.International Journal of Electrical Power & Energy Systems, 1979, 1(2):3-15.
  • 2Dommel H W, Tinney T F. Optimal Load Flow Solutions. IEEE Trans on Power Apparatus & Systems, 1968, 87 (5) : 1866-1876.
  • 3Sun D I, Ashley B, Brewer B, et al. Optimal Power Flow by Newton Approach. IEEE Trans on Power Apparatus & Systems, 1984, 103(10): 2864-2880.
  • 4Shouhs R R, Sun D T. Optimal Power Flow Based upon P-Q Decomposition. IEEE Trans on Power Apparatus & Systems,1982, 101(1): 397-405.
  • 5Momoh J A, Koessler R J, Bond M S, et al. Challenges to Optimal Power Flow. IEEE Trans on Power Systems, 1997,12(1) : 444-447.
  • 6Chen L, Tada Y, Okamoto H, et al. Optimal Operation Solution of Power System with Transient Stability Constraints.IEEE Trans on Circuits & Systems I Fundamental and Applications,2001, 48(3): 327-339.
  • 7Tuglie De Enrico, Scala M L, Scarpellini P. Real-time Preventive Action for the Enhancement of Voltage-degraded Trajectories. IEEE Trans on Power Systems, 1999, 14(2):561-568.
  • 8Scala M L, Trovato M, Antonelli C. On-line Dynamic Preventive Control: An Algorithm for Transient Security Dispatch. IEEE Trans on Power Systems, 1998, 15(2): 601-610.
  • 9Gan Deqiang, Robert J T, Zimmerman R D. Stability Constrained Optimal Power Flow. IEEE Trans on Power Systems, 2000, 15(2): 535-540.
  • 10Kundur P. Power Systems Stability and Control. New York:McGraw-Hill, 1994.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部