期刊文献+

渗流驱动问题的多步特征有限元方法

Multistep Characteristic Finite Difference Method for Miscible Displacement of Incompressible Flow in Porous Media
下载PDF
导出
摘要 不可压缩可混溶驱动问题的数学模型是由椭圆型压力方程和抛物型饱和度方程偶合而成的非线性偏微分方程组.用有限元法离散压力方程,向后多步特征有限元法离散饱和度方程,提高了时间误差阶,并得到与单步特征有限元法相同的L2(Ω)模先验误差估计. Miscible displacement of incompressible fluid in porous media is modeled by a nonlinear coupled system of partial differential equations. A procedure is defined to discrete the pressure equation by a standard finite element method and the concentration equation by a muhistep characteristic finite element method. Approximation order is enhanced,and the same order a prior error estimate in L2( Ω )-norm is derived as the single step characteristic method.
作者 龙晓瀚 刘伟
出处 《鲁东大学学报(自然科学版)》 2006年第4期269-274,共6页 Journal of Ludong University:Natural Science Edition
关键词 不可压缩可混溶驱动问题 多步法 特征有限元 L^2-误差估计 incompressible and miscible displacement in porous media multistep characteristic finite element convergence in L^2
  • 相关文献

参考文献9

  • 1[1]Ewing R E,Wheeler M F.Galerkin methods for miscible displacement problems in porous media[J].SIAM J Numer Anal,1980,17:351-365.
  • 2[2]Russell T F.Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media[J].SIAM J Numer Anal,1985,22:970-1013.
  • 3[3]Yuan Yirang.A finite element scheme and analysis for two-phase flow numerical simulation[J].Chinese Sci Bull,1984,29:193-197.
  • 4[4]Wang H,Liang D,Ewing R E,et al.An improved numerical simulator for different types flows in porous media[J].Numer Meth PDE,2003,19:343-362.
  • 5[5]Bramble J H,Sammon P H.Efficient higher order single step methods for parabolic problems:Part Ⅰ[J].Math Comp,1980,35:655-677.
  • 6[6]Ewing R E,Russell T F.Multistep Galerkin methods along characteristics for convection diffusion problems,in Advances in Computer Methods for Partial Differential Equations IV.R.Vichnevetsky and R.S.Stepleman,eds.,IMACS[M].New Brunswich:Rutgers Univ,1981:28-36.
  • 7[7]Douglas J Jr.Finite difference methods for two-phase incompressible flow in porous media[J].SIAM J Number Anal,1983,20:681-696.
  • 8[8]Wheeler M F.A priori L2-error estimates for Galerkin approximations to parabolic partial differential equations[J].SIAM J Number Anal,1973,10:723-759.
  • 9[9]Akrivis G,Grouzeix M,Makridakis Ch.Implicit-explicit multistep finite element methods for nonlinear parabolic problems[J].Math Comp,1998,67:457-477.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部