期刊文献+

奇摄动Volterra型积分微分方程的非线性边值问题

Singular Perturbation of Volterra Type Integrodifferential Equation for Nonlinear Boundary Value Problems
下载PDF
导出
摘要 利用微分不等式理论研究了二阶Volterra型积分微分方程非线性边值问题的解的存在性和一致有效估计.以上下解为基础,在适当条件下,构造具体的上下解,得到了解的存在性和一致有效估计.结果表明这种技巧为奇摄动边值问题的存在性和一致有效估计研究提出了新的思路. The existence and uniformly estimation of solution for nonlinear boundary value problem of Voherra type equation are studied by means of differential inequality theories. Based on the upper and lower solution, specific upper and lower solutions are constructed, and the existence and uniformly estimation of solution are obtained. The result shows that it is a new way to apply these techniques to solving the existence and uniformly estimation of singularly perturbed boundary problem,
作者 金丽 王国灿
出处 《大连铁道学院学报》 2006年第4期6-9,共4页 Journal of Dalian Railway Institute
关键词 VOLTERRA型积分微分方程 下解方法 存在性和一致有效估计 Voherra type integro-differential equation upper and lower solution method existence and uniformly estimation.
  • 相关文献

参考文献4

  • 1周钦德 苗树梅.二阶非线性边值问题的奇摄动[J].应用数学和力学,1988,(1):91-94.
  • 2张祥.The Robin Problem for Singular Perturbed Integral Differential Equations of Volterra Type[J].Chinese Quarterly Journal of Mathematics,1992,7(3):24-31. 被引量:12
  • 3章国华.HOWES FA非线性奇摄动现象[C].理论和应用.福州:福建科技出版社,1989.
  • 4WANG Guo-can,Nonlinear boundary value problems for Volterra-Hammerestin type integrodifferential equation[ J ].Soochow Journal of Mathematics,1995,(1):57-59.

二级参考文献2

  • 1苗树梅,高校应用数学学报,1988年,3卷,3期,392页
  • 2莫嘉琪,数学物理学报,1985年,5卷,2期,225页

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部