期刊文献+

支持向量机和AdaBoost目标跟踪新方法 被引量:2

New Target Tracking Algorithm Based on Support Vector Machines and AdaBoost
下载PDF
导出
摘要 在目标跟踪领域,目标检测对跟踪的效果起决定性作用,提出一种用支持向量机进行目标跟踪的方法。采用AdaBoost算法选择最具有代表性的Harr特征,将选择出来的特征作为支持向量机训练器的输入数据来训练目标检测分类器。为了加速检测速度,使用了层叠加速检测算法。实验结果表明,该算法不但提高了识别的正确率,而且大大提高了检测速度。 It is very important to target detecting in the field of target tracking field. A kind of detection algorithm using support vector machine is proposed in this paper. It selects representative Hart characters using AdaBoost method and taking it as input data of support vector machines. In order to accelerate detecting speed, the cascade method is also been used. The experiment result shows that this algorithm improves not only the tracking precision but detecting speed.
出处 《微计算机信息》 北大核心 2006年第11S期290-292,共3页 Control & Automation
基金 863计划(编号:2002AA731030)
关键词 目标识别 支持向量机 ADABOOST Harr特征 Target Recognition,AdaBoost,Support Vector Machine,Harr feature
  • 相关文献

参考文献6

  • 1Vapnik V N.The Nature of Statistical Learning Theory.New York:Spinger-Verlag,1995
  • 2龙云利,刘安芝,刘希顺.基于小波变换与支持向量机的虹膜识别新算法[J].微计算机信息,2005,21(12Z):158-160. 被引量:6
  • 3Platt J.Sequential minimal optimization:A fast algorithm for training support vector machines[A].In:Advances in Kernel Methods-Support Vector learning[C].Massachusetts:The MIT Press,1999:185~208
  • 4P.Viola,and M.Jones,"Robust Real-Time Object Detection",Cambridge Research Laboratory Technical Report CRL 2001/01,Compaq CRL,February 2001
  • 5Freund Y.Boosting a weak learning algorithm by majority.Information and Computation,1995(121)
  • 6Freund Y,Schapire R.E.A decision-theoretic generalization of online learning and an application to boosting.In Proc.Second European Conference on Computational Learning Theory,1995

二级参考文献8

  • 1J.Daugman,"High confidence visual recognition of persons by a test of statistical independence," IEEE Trans.Pattern Analy.Machine Intell.vol.15,pp.1148-1161,Nov.1993.
  • 2R.Wildes,"Iris recognition:an emerging biometric technology," Proc.IEEE,vol.85,pp.1348-1363,Sept.1997.
  • 3An Efficient One-Dimensional Fractal Analysis for Iris Recognition Chuan Chin Teo ,et.WSCG' 2005,January 31-February 4,2005.
  • 4Li Ma,et.Efficient Iris Recognition by charactering Key Local Variations.IEEE Transctions on image processing.Vol 13,No 6,2004.
  • 5Technique Using Human Iris Recognition.The 15th International Conference on Vision Interface,pp.294-299,May 27-29,2002,Calgary,Canada.
  • 6王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别.中国科学院自动化研究所模式识别国家重点实验室.
  • 7中国科学院虹膜图像库.CASIA Iris Image Database http://www.sinobiometrics.com.
  • 8马永军,方凯,方廷健.基于支持向量机和距离度量的纹理分类[J].中国图象图形学报(A辑),2002,7(11):1151-1155. 被引量:17

共引文献5

同被引文献11

  • 1王兰云,赵拥军.多目标跟踪数据关联及其改进算法[J].微计算机信息,2005,21(12S):190-191. 被引量:10
  • 2G. Schalk, J. Dennis, H. Thilo et al. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System [J]. IEEE Trans. Biomed. Eng., 2004, 51(6):1034-1043.
  • 3BCI Competition III website [OL]: http://ida.first.fraunhofer.de/ proj ects/bci/competition/.
  • 4S. Lemm, B. Blankkertz, G. Curio, K.-R. MUller. Spatio-speetral Filters for Improved Classification of Single Trial EEG [J]. IEEE Trans. Biomed. Eng., 2005, 52(9): 1541-1548.
  • 5J.Muller-Gerking, G. Pfurtscheller, H.Flyvbjerg. Designing Optimal Spatial Filters for Single-trial EEG Classification in a Movement Task [J]. Clin. Neurophysiol.,110:787 - 798, 1999.
  • 6Y. Liu, Z.T. Zhou, D.W. Hu, G. H. Dong. T-weighted Approach for Neural Information Processing in P'300 Based Brain-Computer Interface [C]. Zhao M.S., Shi Z.Z.. ICNN&B, Beijing: CNNC, IEEE CIS, 2005, 3:1535-1539.
  • 7C.,C.Chang,C.-J.Lin.LIBSVM:A Library for Support Vector Machines [OL]. Available: http://www.csie.ntu.edu.tw/verb-cjlin/libsvm, 2006.
  • 8Zhou Hongren. Tracking of Maneuvering Targets:[Ph.D Dissertation]. Minneapolis:University of Minnesota,1984.
  • 9蔡庆宇等著.相控阵雷达数据处理及其仿真技术.北京:国防工业出版社.1997.
  • 10范洪达,李相民等著等弹火控系统分析与设计.海潮出版社.1999.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部