期刊文献+

可推出3-NZF的平方图

The Square of Graphs Which Can Admit 3-NZF
下载PDF
导出
摘要 已知G2=G∪{uv dG(u,v)=2,u,v∈V(G)},如果定义算法,1)令G2=G0,2)Gk=Gk-1\{uv},dG(u,v)=2,这样就可以得到边数更少的图G。考虑G2推出3-NZF但∈τ1,3且|V(G)|+|E(G)|的极小反例,以及Gτ1,3但G2不推出3-NZF且满足1.|E(G)|-|V(G)|尽可能小,2.在1)成立的条件下,|E(G)|尽可能小的反例,于是有结论:G2推出3-NZF,当且仅当Gτ1,3。 It is shown that G^2=G∪{uv|dG(u,v)=2,u,v∈V(G)}.If we define the algo rithm : ( 1 ) suppose G^2=G0,2)Gk=Gk-1/{uv},dG(u,v)=2,thus we can obtain a graph G whose edges is less than G^2. Considering the least counter-example G which belongs to τ1,3,but G^2 admits 3-NZF, and |V( G)| + |E (G) | is as small as possible, on the contrary, considering the counter-example that G2 doesn't admit 3-NZF, bu t G doesn't belongs to τ1,3 satis[ying (1) | E ( G )|- |V(G)| is as small as possible,(2) on the basis of ( 1 ), | E ( G )|I is as small as possible, then we make conclusions:G^2 admits 3 - NZF,if and only if G¢τ1,3.
作者 余春刚
出处 《金陵科技学院学报》 2006年第4期7-11,共5页 Journal of Jinling Institute of Technology
关键词 k-NZF τ1 3 Mod3-Direction k-flow τ1 3 G*e0 Modk-flow flow tree cycle k - NZF τ1,3, Mod3 - Direction k - flow rl,3 G*e0 Modk-flow
  • 相关文献

参考文献5

  • 1[1]C.Q.Zhang.Integer Flows and Cycle Covers of Graphs[M].New York:Macel Dekker,1997:245-246.
  • 2[2]W.T.Tutte.On the imbedding of linear graphs in surfaces,Proc[J].Australia:Soc,1943,2(51):474-483.
  • 3[3]P.A.Catlin.Double cycle covers and the Petersen graph[J].J.Graph Theory,1989,13:465-483.
  • 4[4]C.Q.Zhang.Integer Flows and Cycle Covers,Plenary lecture at Graph The ory Workshop[J].J.of Nanjing Normal University,1998(4):368-369.
  • 5[5]J.A.Bondy,U.S.R.Murty.Graph Theory with Applications[M].London:Macmillan,1976:15-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部