期刊文献+

代数学中有关概念的演进及其教学意义

Evolving of Algebraic Conceptions and the Teaching Significance
下载PDF
导出
摘要 代数学中有许多概念之间既相互联系、又相互转化,这种演进关系不仅仅有理论研究方面的需要,也有实际应用方面的刺激。在教学中,如果能够把这两个方面与代数知识的传授、代数方法的训练以及代数思维能力的培养有机地结合起来,那么,就不仅能够激发学生学习代数理论的兴趣与动力,而且更为重要的是,这种有机结合还能够提升学生欣赏数学的品味。 There Exists mutual transformation relationship among algebraic conceptions. The evolving relationship comes not only from the demand of theoretical studies but also from the requirement of practically application. In teaching practice, if the two sides are organically combined with teaching of algebraic knowledge, training of algebraic method and cultivation of algebraic thinking ability, the students' tastes in appreciating mathematics will be enhanced greatly, apart from stimulating the students' interests and motivations on the subject.
出处 《金陵科技学院学报》 2006年第4期98-101,共4页 Journal of Jinling Institute of Technology
基金 全国教育科学"十五"规划重点课题国家一般项目(BHA010079)
关键词 代数学 概念演进 教学意义 实际刺激 理论需要 algebra evolving of conceptions teaching significance practical stimulation theoretical demand
  • 相关文献

参考文献6

  • 1[1]邵建峰,朱耀亮等.线性代数[M].北京:化学工业出版社,2006:1-206.
  • 2[2]左孝凌,李为槛,刘永才.离散数学[M].上海:上海科学技术文献出版社,2006:175-222.
  • 3[5]张禾瑞 郝(钅丙)新.高等代数(第三版)[M].北京:高等教育出版社,2000:369-393.
  • 4[6]箫树铁,居余马,李海中.代数与几何[M].北京:高等教育出版社,2000:1-168.
  • 5[7]余正光,李永乐,詹汉生.线性代数与解析几何[M].北京:清华大学出版社,1998:1-125.
  • 6张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5

二级参考文献13

  • 1张国印.任意环的乘法模(英文)[J].南京大学学报(数学半年刊),2006,23(1):59-69. 被引量:3
  • 2[1]Demarco,G.,Orsatti,A..Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466.
  • 3[2]Sun,S.H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra.,1992,78:183-194.
  • 4[3]ZHANG Guo-yin,WANG Fang-gui and TONG Wen-ting.Multiplication Modules in which Every Prime Submodule Is Contained in a Unique Maximal Submodule[J].Comm.Algebra,2004,32(5):1945-1959.
  • 5[4]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2002-2023.
  • 6[6]McCasland,R.L.,Moore,M.E.,Smith,P.F.On the Spectrum of a Module over a Commutative Ring[J].Comm.Algebra,1997,25(1):79-103.
  • 7张国印.任意环上的模谱[J].南京大学学报数学半年刊,1999,16(1):42-52.
  • 8[9]Abd El-Bast,Z.,Smith,P.F..Multiplication Modules[J].Comm.Algebra,1988,16(4):32-36.
  • 9[10]Tuganbaev,A.A.Multiplication Modules over Non-communicative[J].Rings.Sbornik:Mathematics,2003,194,(12):1837-1864.
  • 10[11]Tuganbaev,A.A.Distributive Modules and Related Topics[M].Austrlia,Canada:Gordon and Breach Science Publishers,1999:33.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部