一种新的基于投影的频繁模式树构造算法
摘要
本文分析FP-growth算法存在的主要问题,提出了一种新的基于投影的频繁模式树构造算法。该算法充分利用大型数据库的投影运算能力,按层来构造频繁模式树(FP-tree),有效地解决了传统的FP-tree构造中存在的问题。实验结果表明,本文的算法与传统的频繁模式树的构造算法相比,具有比较好的时间和空间的可伸缩性。
出处
《计算机科学》
CSCD
北大核心
2006年第B12期136-138,177,共4页
Computer Science
基金
广西“新世纪十百千人才工程”专项基金项目(桂人字2001213号)和广西自然科学基金项目(桂科自0229008)联合资助.
参考文献11
-
1Han J, Kamber M. Data Mining: Concepts and Techniques.Morgan Kaufman, San Francisco, CA, 2001
-
2Agrawal R,Imielinski T,Swami A. Mining association rules between sets of items in large databases. In: Proceedings of 1993ACM-SIGMOD International Conference on Management of Data,Washington,D. C. ,May 1993. 207-216
-
3Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C,eds. Proc. of the 20th Int'l Conf. on Very Large Data Bases.Santiago: Morgan Kaufmann, 1994. 478-499
-
4Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation. In:Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data, Dallas, TX:ACM Press,2000. 1-12
-
5Pei Jian, Han Jiawei, Mao Runying. Closet; An efficient algorithm for mining frequent closed itemsets. In: SIGMOD International Workshop on Data Mining and Knowledge Discovery,May 2000
-
6Pei Jian, Han Jiawei, Wang Jianyong. Closet+:Searching forthe best strategies for mining frequent closed itemsets. In:SIGKDD'03, August 2003
-
7Lucchese C, Orlando S, Perego R. Fast and Memory Efficient Mining of Frequent Closed Itemsets: [Technical Report CS-2004-9]. Nov 2004
-
8杨红菊,梁吉业.一种挖掘频繁项集和频繁闭包项集的算法[J].计算机工程与应用,2004,40(13):176-178. 被引量:5
-
9Mohammad EI-Hajj, Zaiane O R, COFI-tree Mining:A NewApproach to Pattern Growth with Reduced Candidaec Generation. In..Workshop on Frequent Itemset Mining Implementations(FIMI'03) in conjunction with IEEE-ICDM 2003, Melbourne,Florida, USA,November 2003
-
10范明,李川.在FP-树中挖掘频繁模式而不生成条件FP-树[J].计算机研究与发展,2003,40(8):1216-1222. 被引量:56
二级参考文献15
-
1R Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc of 1994 Int'l Conf on Very Large Data Bases.Santiago, Chili: VLDB Endowment, 1994. 487--499.
-
2J S Park, M S Chen, P S Yu. An effective Hash-based algorithm for mining association rules. In: Proc of 1995 ACM-SIGMOD Int'l Cord on Management of Data. San Jose, CA: ACM Press,1995. 175--186.
-
3S Brin, R Motwani, C Silvemtein. Beyond market basket:Generalizing association rules to correlations. In: Proe of 1997 ACM-SIGMOD Int'l Conf on Management of Data. Tucson, AZ:ACM Press, 1997. 265--276.
-
4R Agrawal, R Srikant. Mining sequential patterns. In: ICDE'95. Taipei, Taiwan: IEEE Computer Society Press, 1995. 3--14.
-
5G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. San Diego, CA:ACM Press, 1999. 43~52.
-
6J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation. In: Proe of 2000 ACM-SIGMOD Int'l Conf on Management of Data. Dallas, TX: ACM Press, 2000. 1--12.
-
7Artur Bykowski, Christophe Rigotti. A eondemsed representation to find frequent patterns. In: Proe of the 20th ACM SIGACT-SIGMOD-SIGART Symp on Principles of Database Systems(PODS 2001). Santa Barbara, CA: ACM Press, 2001. 267~273.
-
8范明 等.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.8.
-
9R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].In:The ACM SIGMOD Int′l Conf Management of Data, Washington D C, 1993: 207~216
-
10Rakesh Agrawal,Ramakrishnan Srikant. Fast algorithms for mining association rules[C].In:Proceedings of the 20th International Conference on Very Large Databases,Santigo,Chile, 1994:487~499
共引文献58
-
1李泓冰.WTO的眉批:伤脑筋的道德成本[J].理论参考,2002(S1):46-46.
-
2秦亮曦,苏永秀,刘永彬,梁碧珍.基于压缩FP-树和数组技术的频繁模式挖掘算法[J].计算机研究与发展,2008,45(z1):244-249. 被引量:16
-
3谢志强,朱孟杰,杨静.基于改进FP-树的最大项目集挖掘算法[J].计算机应用研究,2009,26(2):502-505. 被引量:1
-
4蔡高明.一种快速挖掘模糊频繁项集的方法[J].科技经济市场,2008(3):5-6.
-
5庄蔚蔚,姜青山.恶意软件鉴别技术及其应用[J].集成技术,2012,1(1):55-64. 被引量:3
-
6丁欣,马严,吴军.适用于校园网的视频推荐系统的设计与实现[J].通信学报,2013,34(S2):175-179. 被引量:4
-
7李清峰,杨路明,张晓峰.关联规则中最大频繁项目集的研究[J].计算机应用研究,2005,22(1):93-95. 被引量:3
-
8赵艳铎,宋斌恒.基于逆向FP-树的频繁模式挖掘算法[J].计算机应用,2005,25(6):1385-1387. 被引量:8
-
9秦亮曦,史忠植.多时间序列跨事务关联分析研究[J].计算机工程与应用,2005,41(27):10-12. 被引量:4
-
10秦亮曦,史忠植.关联规则研究综述[J].广西大学学报(自然科学版),2005,30(4):310-317. 被引量:22
-
1李畅畅,曾黄麟,孙勇,王振明.一种基于映射方法的改进频繁模式增长算法[J].四川理工学院学报(自然科学版),2009,22(3):80-82. 被引量:1
-
2李畅畅.一种基于映射方法的改进频繁模式增长算法[J].科技信息,2010(11):27-28.
-
3牛新征,佘堃.基于FPMAX的最大频繁项目集挖掘改进算法[J].计算机科学,2013,40(12):223-228. 被引量:9
-
4赵旭俊,张继福,蔡江辉.约束频繁模式树及其构造方法研究[J].小型微型计算机系统,2010,31(4):682-685. 被引量:2