期刊文献+

一种用于挖掘正、负关联规则的改进Apriori算法 被引量:1

下载PDF
导出
摘要 本文提出一种传统的关联规则挖掘主要着眼于正关联规则,即形如A→B的规则的挖掘,而对负关联规则的研究非常有限,然而实践表明在关联规则的各个应用领域中,负关联规则同正关联规则有着同样的重要性。Apriori算法是挖掘关联规则的一个经典算法,但是它只局限于挖掘正关联规则,本文对该算法进行改进提出了Ex-Apriori算法,新算法不仅能挖出负关联规则,而且由于兴趣度的引进,能够剔除大量无趣的关联规则。实验表明该种算法有效且可行。
出处 《计算机科学》 CSCD 北大核心 2006年第B12期242-244,共3页 Computer Science
基金 本研究得到国家自然科学基金青年基金资助(编号:60403009).
  • 相关文献

参考文献7

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in massive databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. ACM,Washington D.C. 1993. 207-216
  • 2Agrawal R, Srikant R. First algorithms for mining association rules in large database [A ]. In: Proceedings of the 1994 International Conference on VLDB [C ]. San Franeisco: MorganKaufmann Publishers, 1994. 487-499
  • 3Wu X, Zhang C, Zhang S. Mining both positive and negative association rules. In: Proc. of ICML, 2002. 658-665
  • 4Brin S, Motwani R, Silverstein C. Beyond market basket: Generalizing associationrules to correlations. In: Proc. of SIGMOD,1997. 265-276
  • 5Savasere A, Omieeinski E, Navathe S. Mining for strong negative associations in a large database of customer transactions.In: Proc. of ICDE, 1998. 494-502
  • 6Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowledge discovery in Databases. AAAI/MIT, Menlo Park, Calif. , USA, 1991. 229-248
  • 7朱玉全,陈耿,杨鹤标.正负关联规则挖掘算法研究[J].计算机科学,2006,33(3):188-190. 被引量:10

二级参考文献11

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases [C].In:Proc.of ACM SIGMOD Int.Conf.Management of Date,Washington D C,1993.207~216.
  • 2Agrawal R,Srikant R.Fast algorithm for mining association rules [C].In:Proc.20th Int.Conf.on VLDB,Santiago,Chile,1994.487~499.
  • 3Han J,Kamber.MData Mining:Concepts and Techniques [M].Beijing:High Education Press,2001.
  • 4Goethals B.Survey on frequent pattern mining [R].Helsinki Institute for Information Technology:[Technical Report].2003.
  • 5Han J,Jian P,et al.Mining Frequent Patterns without Candidate Generation [C].In:Proc.of 2000 ACM SIGMOD Intl.Conf.onManagement of Data,Dallas,TX,2000.1~12.
  • 6Savasere A,Omiecinski E,Navathe S.Mining for strong negative rules for statistically dependent items [C].In:Proc.of ICDM,2002.442~449.
  • 7Wu Xin-dong,Zhang Cheng-qi,Zhang Shi-chao.Mining both positive and negative association rules]C].In:Proc.of the 19th intl conf.on machine learning.San Mateo:Morgan Kaufmann Publishers,2002.658~665.
  • 8Antonie M-L,Zaiane O R.Mining Positive and Negative Association Rules:An Approach for Confined Rules [C].In:Proc.of 8th European Conf.on Principles and Practice of Knowledge Discovery in Databases(PKDD 04),Springer Verlag LNCS 3202,Pisa,Italy,Sept.2004.27~38.
  • 9朱玉全,孙志挥,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96. 被引量:80
  • 10朱玉全,孙志挥,赵传申.快速更新频繁项集[J].计算机研究与发展,2003,40(1):94-99. 被引量:63

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部