期刊文献+

抽象空间脉冲泛函微分系统的可控性 被引量:1

Controllability of Impulsive Functional Differential System in Banach Space
下载PDF
导出
摘要 借助Leray-Schauder(非线性抉择)定理,对抽象空间中一类一阶脉冲泛函微分系统适度解的可控性问题进行了研究.所得结论对相关文献的已知结果进行了推广和改进. This paper is mainly concerned with the controllability of impulsive functional differential system in Banach space. By using Leray-Schauder nonlinear alternative theorem, a sufficient condition is established. Our main theorem extends some known results in the corresponding literatures.
出处 《兰州交通大学学报》 CAS 2006年第6期133-136,共4页 Journal of Lanzhou Jiaotong University
关键词 适度解 脉冲泛函微分系 Leray-Schauder非线性抉择定理 可控性 mild solution impulsive functional differential sytem Lanray-Schauder nonlinear alternative theorem controllability
  • 相关文献

参考文献3

  • 1Balachandran K,Dauer J P.Controllability of nonlinear systems in Banach space:A survey[J].J.Optim.Theory Appl.,2002,115:7-28.
  • 2Li Meili,Wang Miansen,Zhang Fengqin.Controllability ofimpusive functional differential systems in Banach spaces[J].Chaos,Solitons & Fractals,2006(29):175-181.
  • 3郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2004.

共引文献14

同被引文献5

  • 1Jin Liang,Liu H,Xiao Tijun. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Mathematical and Computer Modelling ,2009 ; (49) :798--804.
  • 2Guo M,Xue X,Li R. Controllability of Impulsive evolution inclusions with nonlocal conditions. J Optimization Theory Appl,2004 ;120(2) :355--374.
  • 3Abada N. Exisxence and controllability results for impulsive partial functional differential inclusions. Nonlinear Analysis, 2008 ; ( 69 ) : 2892--2909.
  • 4Guo Dajun, Lakshmikansham V, Liu Xinzhi. nonlinear integral equations in abstract Spaces. Dordrecht:Kluwer Academic Publishers,1996.
  • 5Monch H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal, 1980; (4) :985--999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部