摘要
一个图G称为因子k-覆盖的,如果G的任意k条边都属于G的某类因子.G称为因子k-消去的,如果删去G的任意k条边后所得的图仍有某类因子.在二部图的情形下,给出了关于(g,f)-因子、f-因子的k-覆盖和k-消去同时成立的充分条件.对非二部图g<f的情况,得出了(g,f)-因子k-覆盖和k-消去成立的充分条件.
A graph G is called factor-k-covered if any k edges of G contained in some kind of factors. G is termed factor-k-deleted if G-A contains a kind of factors for any k edges of G forming set A. We obtain sufficient conditions for a bipartite graph to be k-covered and k-deleted about (g, f)-factor, f-factor. Same resuits are obtained for non-bipartite graph in the conditions of g〈f.
出处
《兰州交通大学学报》
CAS
2006年第6期141-143,共3页
Journal of Lanzhou Jiaotong University
基金
甘肃省自然科学基金(3XS051-A25-030)
关键词
图
因子
覆盖
消去
graph
factor
covered
delet ed