期刊文献+

一类非线性椭圆型问题爆炸解的存在性与全局最优估计

Existence and Global Optimal Asymptotic Behaviour of Large Solutions to a Semilinear Elliptic Problem
下载PDF
导出
摘要 设f满足:H(t)=∫t∞f(dss)<∞,t∈R,∫-∞∞f(dss)=∞(或H(t)=∫t∞f(dss)<∞,t>0,∫0∞f(dss)=∞,且f'(t)∫t∞f(dss)在R(或(0,∞))上有界,构造爆炸上解和爆炸下解,得到了非线性椭圆型问题Δu=f(u),x∈Ω,u|Ω=+∞解的存在性和渐近行为的全局最优估计. Abstract: By constructing an explosive subsolution and an explosive supersolution, it has been shown for the existence and the estimate of global optimal asymptotic behaviour of large solutions to the nonlinear elliptic problem Au =f(u);u|aΩ=+∞ under the new constructive conditions on f: H(t) =∫^∞ t ds /f(s)〈∞,t∈R,∫^∞ -∞ ds/f(s)=∞(or H(t)==∫^∞ 1 ds/f(s)〈∞ ,t〉0,∫^∞ 0 ds/f(s)=∞ .and f(t)∫^∞ t ds/f(s) is bounded on R (or (0,∞).
出处 《烟台大学学报(自然科学与工程版)》 CAS 2007年第1期1-4,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10671169)
关键词 非线性椭圆型方程 爆炸下解 爆炸上解 存在性 渐近行为 nonlinear elliptic equations explosive subsolutions explosive supersolutions existence asymptotic behaviour
  • 相关文献

参考文献38

  • 1Bandle C, Marcus M. Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior [J]. J Analyse Math, 1992, 58: 9-24.
  • 2Bandle C, Giarrusso E. Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms [J]. Adv Differential Equations, 1996, 1: 133-150.
  • 3Chuaqui M, Cortazar C, Elgueta M. On an elliptic problem with boundary blow-up and a singular weight: radial case [J]. Proceedings of the Royal Society of Edinburgh,2003, 33A: 1283-1297.
  • 4Castillo E B, Albomoz R L. Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations [J]. J Math Anal Appl, 2003,280: 123-132.
  • 5Cirstea F, Radulescu V D. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J]. C R Acad Sci Paris, 2002, 335: 447-452.
  • 6Cirstea F, Radulescu V D. Asymptotics for the blow-up boundary solution of the logistic equation with absorption[J]. C R Acad Sci Paris, 2003, 336: 231-236.
  • 7Cirstea F, Radulescu V D. Solutions with boundary blow-up for a class of nonlinear elliptic problems [J]. Houston J Math, 2003, 29: 821-829.
  • 8Cirstea F, Niculescu C, Radulescu V D. Explosive solutions of elliptic equations with absorption and nonlinear gradient term [J]. Proc Indian Acad Sci Math, 2002,112:441-451.
  • 9Diaz G, Letelier R. Explosive solutions of quasilinear elliptic equation: existence and uniqueness [J]. Nonlinear Anal, 1993, 20: 97-125.
  • 10Du Yi-hong, Huang Qin-guang. Blow-up solutions for a class of semilinear elliptic and parabolic equations [J]. SIAM J Math Anal, 1999, 31: 1-18.

二级参考文献64

  • 1彭亚红.具有非线性梯度项的半线性椭圆型方程的爆炸解[J].数学年刊(A辑),2005,26(2):291-296. 被引量:1
  • 2Aftalion, A. & Reichel, W., Existence of two boundary blow up solutions for semilinear elliptic equations [J], J. Differential Equations, 141(1997), 400-421.
  • 3Amann, H., Existence and multiplicity theorems for semilinear elliptic boundary value problems [J], Math. Z., 150(1976), 567-597.
  • 4Anuradha, V., Brown, C. & Shivaji, R., Explosive nonnegative solutions of boundary value problems [J], Nonlinear Analysis, 26(1996), 613-630.
  • 5Bandle, C. & Marcus, M., Large solutions of semilinear elliptic equations: existence,uniqueness and asymptotic behavior [J], J. Analyse Math., 58(1992), 231-250.
  • 6Diaz, G. & Letelier, R., Explosive solutions of quasilinear elliptic equations: existence and uniqueness [J], Nonlinear Analysis, 20(1993), 97-125.
  • 7Gilbarg, D. & Trudinger, N. S., Elliptic partial differential equations of second order[M], 2nd, Springer-Verlag, Berlin, 1983.
  • 8Keller, J. B., On solutions of Au = f(u) [J], Commun. Pure Appl. Math., 10(1957),503-510.
  • 9Kondrat'ev, V. A. & Nikishkin, V. A., Asymptotic near the boundary of a singular boundary-value problem for a semilinear elliptic equation [J], Differentsial'nye Uravneniya, 26(1990), 465-468; English transl. Differential Equations, 26(1990), 345-348.
  • 10Lair, A. V. & Wood, A. W., Large solutions of semilinear elliptic problems [J], Nonlinear Analysis, 37(1999), 805-812.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部