摘要
设f满足:H(t)=∫t∞f(dss)<∞,t∈R,∫-∞∞f(dss)=∞(或H(t)=∫t∞f(dss)<∞,t>0,∫0∞f(dss)=∞,且f'(t)∫t∞f(dss)在R(或(0,∞))上有界,构造爆炸上解和爆炸下解,得到了非线性椭圆型问题Δu=f(u),x∈Ω,u|Ω=+∞解的存在性和渐近行为的全局最优估计.
Abstract: By constructing an explosive subsolution and an explosive supersolution, it has been shown for the existence and the estimate of global optimal asymptotic behaviour of large solutions to the nonlinear elliptic problem Au =f(u);u|aΩ=+∞ under the new constructive conditions on f: H(t) =∫^∞ t ds /f(s)〈∞,t∈R,∫^∞ -∞ ds/f(s)=∞(or H(t)==∫^∞ 1 ds/f(s)〈∞ ,t〉0,∫^∞ 0 ds/f(s)=∞ .and f(t)∫^∞ t ds/f(s) is bounded on R (or (0,∞).
出处
《烟台大学学报(自然科学与工程版)》
CAS
2007年第1期1-4,共4页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(10671169)
关键词
非线性椭圆型方程
爆炸下解
爆炸上解
存在性
渐近行为
nonlinear elliptic equations
explosive subsolutions
explosive supersolutions
existence
asymptotic behaviour