期刊文献+

非线性滤波算法在无源定位中的应用 被引量:3

Application of Non-linear Filtering Algorithms in Passive Location
下载PDF
导出
摘要 针对无源定位中量测方程非线性对滤波精度及稳定性的影响,分析了基于模型线性化的滤波算法,包括扩展卡尔曼滤波(EKF)、伪线性滤波(PLF)、修订增益的扩展卡尔曼滤波(MGEKF)算法的特点,重点论述了非线性滤波(UKF)与粒子滤波器(PF)这2种新的非线性滤波方法思想及其特点,指出了无源定位问题中,这2种算法有更好的滤波精度及稳定性. For the effect of nonlinear measurement equation in passive location on the precision and robustness of filtering, Model-linearization algorithms which include EKF algorithms, PLF algorithms, and MGEKF algo- rithms are analyzed. Then the feature and idea of two novel nonlinear filtering algorithms, UKF and PF, are emphatically discussed. It is also shown that these two algorithms are more robust and precise in passive location.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2007年第1期35-39,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 山东省自然科学基金资助项目(2005G15)
关键词 非线性滤波 无源定位 粒子滤波器 nonlinear filtering passive location particle filter
  • 相关文献

参考文献6

  • 1高磊,徐德民,崔海英,谢琳.混合坐标下的卡尔曼滤波应用于水下被动目标跟踪[J].西北工业大学学报,2001,19(2):254-257. 被引量:7
  • 2Weiss H, Moore J B. Improved extended kalman filter design for passive tracking [J]. IEEE Trans Automat Contr,1980,30:807-811.
  • 3Peggy J G, Mohammed A I. An alternative derivation of the modified gain function of song and speyer [J]. IEEE Transactions on Automatic Control, 1991,36: 1323-1326.
  • 4Julier S J. A new method for the nonlinear transformation of means and covariances in filters and estimators [J].IEEE Tnms on Automatic Control, 2000,45: 477-482.
  • 5Dan C, Arnaud D. A survey of convergence results on partical filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002,140:736-746.
  • 6Gordon N, Salmond D, Smith A F M, Novel approach to nonlinear and non-Gaussian Bayesian state estimation [J].Proc Inst Elect Eng, 1993,140: 107-133.

二级参考文献4

  • 1Tuan P C,Int J Syst Sci,1997年,28卷,3期,283页
  • 2Song T L,IEEE Trans Aerospace Electronic Systems,1996年,32卷,4期,1468页
  • 3邓自立,现代时间序列分析.建模、滤波、去卷、预报和控制,1989年
  • 4郝健康,张明廉,文传源.混合坐标下的卡尔曼滤波及其应用[J].控制与决策,1997,12(2):126-131. 被引量:7

共引文献6

同被引文献18

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3杨旭,程杨,曹喜滨,杨涤.粒子滤波在卫星轨道确定中的应用[J].控制理论与应用,2005,22(4):573-577. 被引量:7
  • 4李保国,肖怀铁,王远模,刘义和,付强.角闪烁背景下基于粒子滤波器的跟踪研究[J].现代雷达,2006,28(2):54-56. 被引量:9
  • 5朱志字.粒子滤波算法及其应用[M].北京:科学出版社,2010:25-26.
  • 6Gordon N, Salmond D. Novel Approach to Non-linear and Non-Gaussian Bayesian State Estimation [J]. Proc of Institute Electric Engineering, 1993, 140(2): 107- 113.
  • 7Gordon N, Salmond D. Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter [J]. J of Guidence, Control and Dynamics, 1995, 18(6):1434-1443.
  • 8N.P.K ostantinos, H. Dimitris. Advanced Signal Processing Handbook [M]. Boca Raton: CRC Press LLC, 2001:89-123.
  • 9Grewal M S, Henderson V D, Miyasako R S.Application of Kalman Filtering to theCalibration and Alignment of Inertial Navigation Systems[J].IEEE Trans.on Automatic Control, 1991, 36 (1) : 4-13.
  • 10Julier S J.A new method for the nonlinear transformation of means and covariance in filters and estimators[J].IEEE Trans on Automatic Control, 2000, 45:477~482.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部