期刊文献+

基于PG原理的三维注射成形流动数值模拟 被引量:1

Numerical Simulation of 3D Plastic Injection Molding Based on PG Methods
下载PDF
导出
摘要 采用PSPG法和SUPG法,分别在动量方程、连续性方程和能量方程的权函数中加入摄动因子以消除振荡,建立了速度和压力同次插值的三维流体流动控制方程的稳定有限元求解格式。通过比较该数值模拟方法与现有的商业分析软件Moldflow的计算结果表明,基于PG原理的三维注射成形流动数值模拟软件具有良好的精度和稳定性。 The SUPG(Streamline-Upwind/Petrov-Galerkin) and PSPG(Pressure-Stabilizing/ Petrov-Galerkin) formulations were employed to prevent the potential numerical instabilities achieved by adding to the weighting functions with their derivatives, thus resulting in the stabilized finite element formulations using equal-order interpolation functions for velocity and pressure. An example shows that the developed numerical algorithms perform stably and give accurate results compared with the well-known commercial software Moldflow.
机构地区 华中科技大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第1期80-82,共3页 China Mechanical Engineering
基金 国家自然科学基金资助重大项目(20490220)
关键词 对流扩散 稳定 SUPG PSPG convection- diffusion stability SUPG PSPG
  • 相关文献

参考文献4

  • 1周华民,张宜生,李德群.基于三维表面模型的注射成型充填模拟(英文)[J].应用基础与工程科学学报,2001,9(1):52-59. 被引量:6
  • 2Brooks A N, Hughes T J R. Streamline Upwind/Petrov- Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32:199-259.
  • 3Tezduyar T E, Mittal S, Ray S E, et al. Incompressible Flow Computations with Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 95: 221-242.
  • 4Tezduyar T E. Computation of Moving Boundaries and Interfaces and Stabilization Parameters[J]. International Journal for Numerical Methods in Fluids, 2003, 43:555-575.

二级参考文献15

  • 1Manzione L T. Application ofcomputer-aided engineering in injection molding[M]. Munich: Hanser Publisher, 1987
  • 2Wang V W, Hieber C A, Wang K K. Dynamic simulation and graphics for the injectionmolding of three-dimensional thin parts[J]. J Polym Eng, 1986, 7:21
  • 3Chiang H H, Hieber C A, Wang K K. A unified simulation of the filling andpostfilling stages in injection molding. Part I: Formulation[J]. Polym Eng Sci, 1991,31(2): 31
  • 4Liu T J, Yu Y W, Hsu C L, Yang Y S. A hybrid 3D/2D finite element technique forpolymer processing operations[J]. Polym Eng Sci, 1999,39(1): 44~54
  • 5MoldFlow Center. http: // www. moldflow.com, Moldflow Corporation, Lexington, MAUSA
  • 6Shen S F. Simulation of polymeric flows in the injection molding process[J]. Int JNumerical Methods in Fluids, 1984, 4:171
  • 7Schlichting H. Boundary-layer theory (6th ed.)[M]. New York: McGraw-Hill, 1968
  • 8Chen B S, Liu W H. Numerical simulation and experimental investigation of injectionmold filling with melt solidification[J]. Polym Eng Sci, 1989, 29:1039
  • 9Hieber C A, Shen S F. Flow analysis of the non-isothermal two-dimensional fillingprocess in injection molding[J]. Israel Journal of Technology, 1978, 16: 248
  • 10Broyer E, Gutfinger C, Tadmor Z. A theoretical model for the cavity fillingprocess in injection molding[J]. Transaction of the Society of Rheology, 1975, 19:423

共引文献5

同被引文献10

  • 1Chiang H H, Hieber C A, Wang K K. A unified simulation of the filling and post-filling stages in injection molding, part I: Formulation [J]. Polymer Engineering and Science, 1991, 31(2): 116-124.
  • 2Chiang H H, Hieber C A, Wang K K. A unified simulation of the filling and post-filling stages in injection molding, part II: Experimental verification [J]. Polymer Engineering and Science, 1991, 31(2): 125- 139.
  • 3Lee S C, Yang D Y, Ko J. Effect of compressibility on flow field and fiber orientation during the filling stage of injection molding [J]. Journal of Material Processing Technology, 1997, 70: 83-92.
  • 4Han K-H, Im Y-T. Compressible flow analysis of filling and postfilling in injection molding with phase-change effect [J]. Composite Structures, 1997, 38(1-4): 179- 190.
  • 5杨濯根.流体力学有限元[M].哈尔滨:哈尔滨工程大学出版社,1995.
  • 6Tezduyar T E. Computation of moving boundaries and interfaces and stabilization parameters [J]. International Journal for Numerical Methods in Fluids, 2003, 43: 555-575.
  • 7Tezduyar T E, Sathe S. Enhanced-discretization successive update method (EDSUM) [J]. International Journal for Numerical Methods in Fluids, 2005, 47: 633-654.
  • 8Franea L P, Carmo D D. The Galerkin gradient least-squares method [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 74:41-54.
  • 9Yan B, Zhou H M, Li D Q. Numerical simulation of the filling stage for plastic injection moulding based on the Petrov-Galerkin methods [J]. Journal of Engineering Manufacture, 2007, 221(B10): 1573- 1577.
  • 10严波,周华民,李德群.基于GLS/SUPG的三维注射成形充模过程数值模拟[J].华中科技大学学报(自然科学版),2008,36(12):83-86. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部