期刊文献+

独立分量分析在多参数控制信号分离中的应用 被引量:1

Use ICA to Study the Multivariable Signals Separation in Control System
下载PDF
导出
摘要 在多参数控制系统中,控制信号由多路输入信道传输给控制单元。由于信道之间存在相互干扰,因而系统的输出受到影响。通过对输入信号的分离,去除信号之间的相互影响,恢复原始的控制信号,能够提高控制系统的性能。独立分量分析是一种盲源分离的方法,对其进行了简要介绍。用此方法对多参数控制系统输入信号进行分离,恢复出原始控制信号。通过大量的仿真试验,验证了此方法的有效性。 In multivariable control s.ystem,the multi- channels signal are transmitted to input interfaces. But there are mutual influences coming from each channel,which can make the system's output warped. Separating the multi- channels signal can eliminate the influence. In this paper we introduce the independence component analysis, the method in blind source separation, and use it to separate the disturbed signals, and then the original control signal could be gotten back and the performance of the system is upgraded, The simulations in this paper compared the results of original,influence and de- influence input signals. It can be proved by the simulation that the availability we used the method is perfect.
作者 李洪 孙云莲
出处 《现代电子技术》 2007年第2期162-164,167,共4页 Modern Electronics Technique
关键词 多参数控制系统 多信道信号分离 独立分量分析 控制信号 multivariabIe control systems separating multi- channels signal independenee component analysis control signal
  • 相关文献

参考文献6

二级参考文献54

  • 1孙健国,黄金泉.发动机喘振裕度自适应控制[J].航空动力学报,1993,8(3):279-282. 被引量:4
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献221

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部