期刊文献+

一种求解车间作业调度问题的改进遗传算法

Improved Genetic Algorithm for Solving Job-Shop Scheduling Problem
下载PDF
导出
摘要 变批量和个性化产品的现代生产方式,使得调度问题在当今生产中日渐受到重视,为克服传统遗传算法在求解车间作业调度问题时的早熟收敛,结合基于工序编码和位置列表编码的优势,设计了混合编码方式,并将局部搜索运用到变异算子中,通过实例验证了该算法的有效性。 As the scalable batch and individual character product are needed in modem manufacturing mode, Job-Shop scheduling problem is attached with great importance. To avoid premature convergence, which appeared in the course of solving Job-Shop scheduling by applying conventional GA, an improved combined code method was proposed by taking advantages of operation-based representation encode and operation-based location list encode, and local search was applied in mutation operator. Its efficiency was validated by applying improved GA to examples.
出处 《机床与液压》 北大核心 2007年第1期19-21,共3页 Machine Tool & Hydraulics
基金 教育部高等学校博士学科点专项科研基金(20040422023) 山东省优秀中青年科学家科研奖励基金(2005BS05001)
关键词 车间作业调度 混合编码 变异算子 局部搜索 Job-Shop scheduling Combined code Mutation operator Local search
  • 相关文献

参考文献5

二级参考文献2

  • 1Qi Xiaofeng,IEEE Trans Neural Networks,1994年,5卷,1期
  • 2张长水,博士学位论文,1992年

共引文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部