摘要
Identification of all genes involved in the phytochrome (phy)-medieted responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth end development. This article highlights end integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-reguleted genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an Initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-femily members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, end, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetioletion.
Identification of all genes involved in the phytochrome (phy)-medieted responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth end development. This article highlights end integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-reguleted genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an Initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-femily members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, end, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetioletion.
基金
Supported by National Institute of Health Grant GM47475, Department of Energy Grant DE-FG03-87ER13742, and U.S. Department of Agriculture Grant 5335-21000-010-00D. Publication of this paper is supported by the National Natural Science Foundation of China (30624808) and Science Publication Foundation of the Chinese Academy of Sciences.Acknowledgements Thank the coauthors of the original research publications used as the basis for this article, and Jim Tepperman for figure preparation and help with the manuscript.