摘要
为了建立一种新型氨基酸结构描述子并用于多肽定量构效关系研究,本研究从天然氨基酸150个radialdistributionfunction(RDF)指数经主成分分析得出一种新3D氨基酸描述子-SVRDF(principalcomponentscoresvectorofradialdistributionfunction),应用该描述子并通过偏最小二乘(PLS)对苦味二肽、催产素及促凝血酶原激酶抑制剂3个体系建立定量构效关系模型。对3个体系建模复相关系数(R2cum)与交互检验复相关系数(Qc2um)分别为0.766和0.724;0.941和0.811;0.996和0.919。研究结果表明,SVRDF描述子能够系统地表征肽与生物活性相关的结构信息,有望成为多肽定量构效关系研究中一种有效的结构表征方法。
To establish a new amino acid structure descriptor that can be applied to polypeptide quantitative structure activity relationship (QSAR) studies, a new descriptor, SVRDF, was derived from a principal components analysis of a matrix of 150 radial distribution function index of amino acids. The scale was then applied in three panels of peptide QSAR that were molded by partial least squares regression. The obtained models with the correlation coefficients (R^2 cum ), cross-validation correlation coefficients (Q^2 cum) were 0. 766 and 0. 724 for 48 bitter tasting dipeptides; 0. 941 and 0. 811 for 21 oxytocin analogues; 0. 996 and 0. 919 for 20 thromboplastin inhibitors. Satisfactory results showed that information related to biological activity can be systemically expressed by SVRDF scales, which may be an useful structural expression methodology for the study of peptides QSAR.
出处
《药学学报》
CAS
CSCD
北大核心
2007年第1期40-46,共7页
Acta Pharmaceutica Sinica
基金
山西省工业攻关项目
山西省首届青年拔尖创新人才专项基金资助项目(2006031204).
关键词
氨基酸
肽
SVRDF描述子
定量构效关系
偏最小二乘
amino acids
peptide
SVRDF
quantitative structure activity relationship
partial least squares