期刊文献+

基于单水平集的多目标轮廓提取 被引量:22

Multi-Objects Extracted Based on Single Level Set
下载PDF
导出
摘要 多目标轮廓提取是图像分割的重要研究内容.文章在Chan和Vese的无边界主动轮廓模型(简称CV模型)的基础上,提出基于单水平集的多目标轮廓提取算法.CV模型只能实现单目标的轮廓提取,主要原因是不能使水平集函数驱动的轮廓线在某些目标区域正确分裂,没有有效利用轮廓线的拓扑分裂信息.通过修正CV模型,引入标记模板,用于追踪零水平集的分裂情况,对不同的准目标区域区别处理;引入图像区域均值模板,用于估计可能淹没在背景区域中的目标区域,促使水平集函数在上述目标区域充分变形,使对应零水平集充分分裂,实现多目标轮廓提取.并且文章提供了一系列不同条件下的实验结果,并与其它类似的研究成果进行比较,结果表明,该文的工作是有意义的. Multiple-objects contour extraction is an important area in image segmentation. Based on the active contours model without edges, known as CV model, which is proposed by Chan and Vese, the authors propose a multiple-objects contour extraction algorithm based on single level set function. CV models just shed the light on single object contour extraction. The major cause is it makes the level-set-function driven contours to split in some targeted areas, which do not make use of topology split information of the contours effectively. By modifying the CV model, this paper introduces the mark template to track the split information of the zero-level-set and carries out different scheme at different targeted areas. Furthermore, this paper introduces image area average template to evaluate the possible targeted area submerged in the background, which deform the level set function efficiently on the above targeted area to realize the zero-level-set split and multiple-objects extraction. The authors have offered a series of experimental results under different conditions and have compared with other research results in this work.
出处 《计算机学报》 EI CSCD 北大核心 2007年第1期120-128,共9页 Chinese Journal of Computers
基金 国家杰出青年科学基金(60525213) 国家自然科学基金重点项目(60533030) 广东省科技攻关项目基金(2004B33101005)等资助.
关键词 多目标轮廓提取 图像分割 单水平集 multiple-objects contour extraction image segmentation single level set
  • 相关文献

参考文献16

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models.International Journal of Computer Vision,1987,1(4):321-331
  • 2Cohen L D.On active contour models and balloons//Proceedings of the CVGIP:IU,1991,53:211-218
  • 3Xu C,Prince J L.Snakes,shapes,and gradient vector flow.IEEE Transactions on Image Processing,1998,7 (3):359-369
  • 4Osher S,Setbian J A.Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics,1988,79(1):12 49
  • 5Malladi R,Sethian J A,Vemuri B C.Shape modeling with front propagation:A level set approach.IEEE Transactions on Pattern Analysts and Machine Intelligence,1995,17(2):158-175
  • 6Caselles V,Kimmel R,Sapiro G.Geodesic active contours.International Journal of Computer Vision,1997,22 (1):61-79
  • 7Chan T F,Vese L A.Active contours without edges.IEEE Transactions on Image Processing,2001,10(2):266-277
  • 8Vese L A,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model.International Journal of Computer Vision,2002,50(3):271293
  • 9Tsai A,Yezzi A,Willsky A.Curve evolution implementation of the Mumford-Shah functional for image segmentation,denoising,interpolation,and magnification.IEEE Transactions on Image processing,2001,10(10):1169-1186
  • 10Feng Hai-Hua.Curve evolution object-based techniques for image reconstruction and segmentation[Ph.D.dissertation].College of Engineering in Boston University,Boston,2002

二级参考文献10

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 2[1]Osher S., Sethian J.A.. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12~49
  • 3[2]Malladi R., Sethian J.A., Vemuri B.C.. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17(2): 158~175
  • 4[3]Caselles V., Kimmel R., Sapiro G.. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61~79
  • 5[4]Chan T., Vese L.. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266~277
  • 6[5]Chan T., Vese L.. An efficient variational multiphase motion for the Munford-Shah segmentation model. In: Proceeeding of Asilomar Conference Signals, Systems, and Computers, 2000, 490~494
  • 7[6]Tsai A., Yezzi A., Willsky A.. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing, 2001, 10(8): 1169~1185
  • 8[7]Mallat S.G. et al.. Multifrequency channel decomposition of image and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 2091~2110
  • 9[8]Unser M., Aldroubi A., Eden M.. B-spline signal processing: Part Ⅰ-theory. IEEE Transactions on Signal Processing, 1993, 41(2): 821~833
  • 10[9]Mallat S.G. et al.. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis Machine Intelligence, 1992, 38(2): 617~643

共引文献142

同被引文献234

引证文献22

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部