期刊文献+

GP——基于规划图的遗传规划算法 被引量:9

GP:Genetic Planning Algorithm Based on Planning Graph
下载PDF
导出
摘要 图规划是智能规划领域近年来出现的一种新的规划方法,对智能规划的发展有着重要的影响.图规划的规划产生过程分为两个主要步骤,首先用动作的前提条件和效果产生一个谓词和动作交错出现的图———规划图,然后在规划图中抽取规划解.而第二步往往更为困难和耗时.文章依据遗传算法对规划图提出一种新的解抽取方法,以一种简明、直观的形式给出染色体的编码方式,并在此基础上定义了各种遗传操作算子,将遗传算法引入图规划算法,充分利用遗传算法的并行全局搜索能力实现规划解的搜索.实验表明,在求解大规模的规划问题时,文中的遗传规划算法在求解速度和找到的规划解的质量两方面均显示出优越性. In recent years, a new planning algorithm, graphplan, is presented and has a great impact on the development of intelligent planning. In graph planning, the algorithm has two main phases: Firstly, a directed, leveled graph with two kinds of nodes and three kinds of edges is constructed according to the preconditions and effects of actions, the levels of planning graph alternate between proposition levels containing proposition nodes and action levels containing action nodes. Secondly, a valid plan is extracted from the planning graph. However the searching of the planning graph is very difficult and cost. In this paper, a way of coding chromosome based on the planning graph is given, and the genetic operators are defined. Accordingly the genetic algorithm is introduced to search for the planning. The experiment shows that the genetic planning is advantage in solving the large planning problem because the genetic algorithm is parallel and global in searching.
出处 《计算机学报》 EI CSCD 北大核心 2007年第1期153-160,共8页 Chinese Journal of Computers
基金 国家自然科学基金(60173039)资助.
关键词 智能规划 规划图 遗传算法 并行搜索 intelligent planning planning graph genetic algorithm parallel searching
  • 相关文献

参考文献15

  • 1Blum A,Furst M.Fast planning through planning graph analysis//Proceedings of the 14th International Joint Conference on Artificial Intelligence,1995:1636-1642
  • 2Blum A L,Furst M L.Fast planning through planning graph analysis.Artificial Intelligence,1997,90:281-300
  • 3Gerevini A,Saetti A,Serina I.Planning through stochastic local search and temporal action graphs in LPG.JAIR,2003,20:239-290
  • 4Gerevini A,Serina I.LPG:A planner based on local search for planning graphs//Proceedings of the 6th International Conference on Artificial Intelligence Planning and Scheduling(AIPS'02).Toulouse,France,2002
  • 5Boner B,Geffner H.Planning as heuristic search.Artificial Intelligence,2001:129(1-2):5-33
  • 6Lee S.Genetic programming and AI planning systems//Proceedings of the 12th National Conference on Artificial Intelligence,1994,2:1329-1334
  • 7Muslea I.SINERGY:A linear planner based on genetic programming//Proceedings of the 4th European Conference on Planning:Recent Advances in AI Planning,1997:312-324
  • 8Westerberg C H,Levine J."GenPlan":Combining genetic programming and planning//Proceedings of the 19th Workshop of the UK Planning and Scheduling Special Interest Group(PLANSIG 2000).Open University,Milton Keynes,UK,2000
  • 9Westerberg C H,Levine J.Optimising plans using genetic programming/ /Proceedings of the UK Workshop on Computational Intelligence (UKCI-01).Edinburgh,2000
  • 10Westerberg C H,Levine J.Investigation of different seeding strategies in a genetic planner//Proceedings of the 2nd European Workshop on Scheduling and Timetabling (EvoSTIM 2001).Springer,2000

二级参考文献20

  • 1李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 2Davis M., Putnam H.. A computing procedure for quantification theory. Journal of Association for Computing Machinery, 1960, 7(3): 201~215.
  • 3Selman B., Levesque H.J., Mitchell D.. A new method for solving hard satisfiability problem. In: Proceedings of the AAAI-92, Menlo Park, 1992, 440~446.
  • 4Selman B., Kautz H., Cohen B.. Noise strategies for improving local search. In: Proceedings of the AAAI-94, Seattle, Washington, 1994, 337~343.
  • 5Gu J.. Local search for satisfiability(SAT) problem. IEEE Transactions on Systems, Man and Cybemetics, 1993, 23(4): 1108~1128.
  • 6de Jong K.A., Spears W.M.. Using genetic algorithms to solve NP-complete problems. In: Proceedings of the 3rd International Conference on Genetic Algorithms, 1989, 124~132.
  • 7Hao J.K., Dorne R.. An empirical comparison of two evolutional methods for satisfiability problems. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, 1994, 1: 450~455.
  • 8Spears W.M.. Simulated annealing for hard satisfiability problems. NCARAI, Washington D.C., Technical Report #AIC-93-015, 1993.
  • 9Young A.R., Reel A.. A hybrid genetic algorithm for a logic problem. In: Proceedings of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, 1990, 744~746.
  • 10Folino G., Pizzuti C., Spezzano G.. Parallel hybrid method for SAT that couples genetic algorithms and local search. IEEE Transactions on Evolutionary Computation, 2001, 5(4): 323~334.

共引文献14

同被引文献58

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部