期刊文献+

CZ法砷化镓单晶生长中熔体流动状态转换 被引量:2

Flow Transitions in Melts during Czochralski Growth of GaAs Single Crystal
下载PDF
导出
摘要 考虑浮力、热毛细力、离心力和科里奥利力的情况下,对CZ法砷化镓单晶生长中熔体流动和传热建立了三维时相关紊流数学模型.通过数值求解预测到了熔体中流动状态的转变.结果表明,熔体中温度梯度驱动的浮力与热毛细力的联合作用和晶体旋转产生的离心力与科里奥利力的联合作用相匹配时,熔体流动为非轴对称流动;当其中一方占优势时,熔体流动为轴对称流动.流动为非轴对称流动时,熔体中出现斜压热流体波.由轴对称流动转变为非轴对称流动的机制为斜压不稳定性.得到了能描述不同条件下熔体流动状态的流动区域图.数值结果对优质砷化镓单晶生长具有重要的参考价值. The time-dependent and three-dimensional turbulent mathematics model is established for the flow and heat transfer of GaAs melt in the Czochralski system. The flow transitions in the melts are predicted. When the combined buoyancy and Marangoni forces induced by temperature gradient are comparable to the combined centrifugal and coriolis forces induced by crystal rotation, the flow in the melt is non-axisymmetric, and when either of them is dominant, the flow is axisymmetric. Baroclinic thermal wave is observed in the non-axisymmetric flow. The mechanism of to non-axisymmetric flow is the baroclinic instability. The flow regime diagrams classifying the flow mode under different conditions are obtained. The calculated results can be taken as a reference for growth of GaAs single-crystal with high quality.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2007年第1期15-20,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(50376078)
关键词 Czochralski法 砷化镓熔体 流动转换 斜压不稳定性 Czochralski growth GaAs melt flow transition baxoclinic instability
  • 相关文献

参考文献12

  • 1Morton J L, Ma N, Bliss D F, et al. J. Crystal Growth,2002, 242 (3-4): 471-485.
  • 2Rojo J C, Derby J J. J. Crystal Growth, 1999, 198/199(2): 154-160.
  • 3Enger S, Basu B J. Crystal Growth, 2000, 219 (1-2): 144-164.
  • 4宇慧平,隋允康,张峰翊,常新安,安国平.φ300mm的大直径直拉单晶硅勾形磁场下生长的数值模拟[J].无机材料学报,2005,20(2):453-458. 被引量:12
  • 5Polezhaev V I, Bessonov O A, Nikitin N V, et al. J. Crystal Growth, 2001, 230 (1-2): 40-47.
  • 6Nikitin N, Polezhaev V. J. Crystal Growth, 2001, 230 (1-2): 30-39.
  • 7LI Mingwei, HU Wenrui, CHEN Nuohu, et al. International Journal of Heat and Mass Transfer, 2002, 45 (13):2843-2851.
  • 8Lipchin A, Brown R A. J. Crystal Growth, 1999, 205 (1-2):71-91.
  • 9陶文全.数值传热学,第二版.西安:西安交通大学出版社,2001.416-459.
  • 10Fein J S, Pfeffer R L. J. Fluid Mech, 1976, 75 (1): 81-112.

二级参考文献13

  • 1郝玉清.98全国半导体硅材料学术会议[M].,1998.75.
  • 2Zhang T, Ladeinde F, Prasad V. Journal of Heat Transfer, 1999, 121: 1027-1041.
  • 3Kobayashi S, Miyahara S, Fujiwara T, et at. Journal of Crystal Growth, 1991, 109: 149-154.
  • 4Zhang T, Ladeinde F, Zhang H. Proc.31^st National Heat Transfer Conf, HTD, 1996, 323: 17-26.
  • 5Hiroshi H. Journal of Crystal Growth, 1992, 125: 181-207.
  • 6Series R W. Journal of Crystal Growth, 1989, 97: 92-98.
  • 7Hirata H, Hoshikawa K. Journal of Crystal Growth, 1989, 96: 747-755.
  • 8Ivanov N G, Korsakov A B, M.Smirnov E, et al. Journal of Crystal Growth, 2003, 250: 183-188.
  • 9Virbulis J, Wetzel Th, Tomzig E. Materials Science in Semiconductor Processing, 2002, 5 (4-5): 353-359.
  • 10Jones W P, Launder B E. Int. J. Heat Mass Transfer, 1973, 16: 1119-1130.

共引文献11

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部