期刊文献+

半群分次范畴上的模范畴,Galois盖与Smash积

Module Category over Semigroup Graded Category,Galois Covering and Smash Product
下载PDF
导出
摘要 设S为有单位元的可消半群.引入半群S对C-M od的作用及半群S分次C-模范畴的概念,证明了当C为B的G a lo is盖时,B-模范畴与C的不动点满子范畴是一致的.对半群S分次B-模范畴,Sm ash积B#S-模范畴与半群S分次B-模范畴是一致的;同时还讨论了半群S分次模的Sm ash积,刻画了Sm ash积函子#与(-)*之间的关系. Let S be a cancellable semigroup with identity 1. Introduces the definitions of S action on L-Mod and S-graded L-Mod. It proves that in case of a Galois covering of category L to B, the category B- Mod of B-modules coincides with the full subcategory of the fixed modules over the category L, while to the S-graded B-Mod, the category B # S-Mod of B # S-modules coincides with the category of S-graded B- modules. As to the S-graded B-module M, introduces M # S and discusses the relationship between the functors # and (-).
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期5-8,45,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10371101) 福建省自然科学基金资助项目(Z0511022) 福建省教育厅基金资助项目(JA05206 JB04251)
关键词 半群分次范畴 伽罗瓦盖 SMASH积 semigroup graded category Galois covering Smash product
  • 相关文献

参考文献8

  • 1Robert N T. An isomorphism between bredon and quinn homology via homotopy colimits [J]. Forum Math, 1999, 11: 591-616.
  • 2Golasinski M. On the object-wise tensor product of the functors to modules [J]. Theory and Applications of Categories, 2000, 7 (1]): 227-235.
  • 3Cibils C, Eduardo N M. Skew category, galois covering and smash product of a k-category [J]. Proc Amer Math Soc, 2006, 134: 39-50.
  • 4Bongartz K, Gabriel P. Covering spaces in representation-theory [J]. Invent Math, 1981, 65: 331-378.
  • 5Cibils C, Redondo M J. Cartan-leray spectral sequence for Galois coverings of categories [J]. J Algebra, 2005, 284: 310-325.
  • 6Abrams G, Menini C, Angel del Rio. Realization theorems for categories of graded modules over semigroup-graded rings [J]. Comm Algebra, 1994, 22 (13): 5343-5388.
  • 7张子龙,蔡炳苓,刘淑霞.半群S-分次环与冲积R#S^*[J].数学学报(中文版),2004,47(5):985-992. 被引量:2
  • 8易忠.模的Smash Product及分次迹和分次余迹[J].广西师范大学学报(自然科学版),1998,16(1):1-7. 被引量:6

二级参考文献10

  • 1Nastasescu C., Raianu S., Van F. Oystaeyen, Modules graded by G-sets, Math. Z., 1990, 203: 605-627.
  • 2Abrams G., Menini C., Angel. del Rio, Realization theorems for categories of graded modules over semigroupgraded rings, Comm. Algebra, 1994, 22(13): 5343-5388.
  • 3Cai C. R., Fang H. J., Correspondence between ideals of A#S* and ideals of Ae for graded ring A, J. Math.Research and Exposition, 2000, 20(2): 271-276 (in Chinese).
  • 4Montgomery S., Passman D. S., Algebraic analogs of the connes spectrum, J. Algebra, 1988, 115: 92-124.
  • 5Margaret B., A generalization of the smash product of a graded rings, J. Pure App1. Algebra, 1988, 52:219-226.
  • 6Liu S. X., G-graded ring and the smash product of G-set, Acta. Math. Sinica, 1993, 36(2): 199-206 (in Chinese).
  • 7Frank W., Anderson, Kent R., Fuller, Rings and categories of modules, New York: Springer-Verlag, 1974.
  • 8Nastasescu C., Van F. Oystaeyen, Graded ring theory, Amsterdan: Nor-Holland, 1982.
  • 9Cohen M., Montgomery S., Group-graded rings, Smash products, and group actions, Tran. Ame. Math. Soc.,1984, 282(1): 237-258.
  • 10BEATTIE M., STEWART P., Graded radicals of graded rings 4cto Math. Hung 1991 58(3/1) 261-272

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部