期刊文献+

可加布朗运动逗留时的矩母函数 被引量:1

The Moment Generating Function for Occupation Measure of Additive Brownian Motion
下载PDF
导出
摘要 讨论d>2N情形的N指标d维可加布朗运动逗留时的极限性质,得到了半径ε趋于0时该逗留时与2εN的比率的矩母函数极限表达式. The asymptotic property of the occupation time of N-parameter R^d-valued additive Brownian motion with d〉2N is discussed. Obtain the asymptotic formula for the moment generating function of the ratio of the occupation time and ε^2N as the radius ε tends to zero.
作者 陈密 林火南
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期20-25,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10271027) 福建省自然科学基金资助项目(F0210015)
关键词 可加布朗运动 逗留时 矩母函数 additive Brownian motion occupation time moment generating function
  • 相关文献

参考文献10

  • 1Dembo A, Peres Y, Rosen J, et al. Thick points for planar Brownian motion and Erdos-taylor conjecture on random walk [J]. Acta Math, 2001, 186: 239-270.
  • 2Dembo A, Peres Y, Rosen J, et al. Thick points for spatial Brownian motion: Mult-ifractal analysis of occupation measure [J]. Ann Probab, 2000, 28: 1-35.
  • 3Dembo A, Peres Y, Rosen J, et al. Thin points for Brownian motion [J]. Ann Inst H Poincaré Math Statist Probab, 2000, 38: 749-774.
  • 4Dembo A, Peres Y, Rosen J, et al. Thick points for transient symmetric stable process [J]. Elect J Probab , 1999, 4: 1-18.
  • 5Khoshnevisan D, Xiao Y M, Zhong Y Q. Loocal times of additive Lévy Processes [J]. Stochastic Processes and Their Appl, 2003, 104: 193-216.
  • 6Khoshnevisan D, Shi Z. Brownian sheet and capacity [J]. Ann Probab, 1999, 27 (11): 1135-1159.
  • 7Khoshnevisan D, Xiao Y M. Level sets of additive Lévy processes [J]. Ann Probab, 2002, 30, 62-100.
  • 8Ehm W. Sample function properties of the multi-parameter stable processes [J]. Z W , 1981, 56: 195-228.
  • 9林火南.iener单的局部时和水平集Hausdorff测度[J].中国科学(A辑),2000,30(10):869-880. 被引量:7
  • 10Stroock D W. Probability theory, an analytic view [M]. New York: Cambridge Univ Press, 1993.

二级参考文献3

  • 1胡迪鹤,刘禄勤,肖益民,吴军,赵兴球.随机分形[J].数学进展,1995,24(3):193-214. 被引量:9
  • 2Zhou Xianyin. Hausdorff measure of the level sets of multi-parameter wiener processes in one dimension[J] 1993,Acta Mathematica Sinica(4):390~400
  • 3W. Ehm. Sample function properties of multi-parameter stable processes[J] 1981,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete(2):195~228

共引文献6

同被引文献8

  • 1Hu X, Taylor S J. The multifractal structure of stable occupation measure [ J ]. Stochastic Process and Their Appl, 1997 (66) : 283 - 299.
  • 2Shieh N R, Taylor S J. Logarithmic multifraetal spectrum of stable occupation measure [ J]. Stochastic Process and Their Appl, 1998 (75): 249-261.
  • 3Dembo A, Peres Y, Rosen J, et al. Thick points for planar Brownian motion and Erdtis-Taylor conjecture on random walk [J]. Acta Math, 2001, 186:239 -270.
  • 4Dembo A, Peres Y, Rosen J, et al. Thick points for spatial Brownian motion : multifractal analysis of occupation measure [J]. AnnProbab, 2000, 28: 1-35.
  • 5Dembo A, Peres Y, Rosen J, et al. Thin points for Brownian motion [ J ]. Ann Inst H Poincar6 Math Statist Probab, 2000, 36 : 749 - 774.
  • 6Dembo A, Peres Y, Rosen J, et al. Thick points for transient symmetric stable process [J]. Elect J Probab, 1999, 4: 1 -18.
  • 7邱志平.可加布朗运动样本轨道的重分形分析[D].福州:福建师范大学,2004.
  • 8王健,陈密.布朗单样本轨道的粗糙重分形分析[J].数学学报(中文版),2009,52(3):561-568. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部