期刊文献+

尺寸和空间分布对电沉积Co纳米线矫顽力的影响 被引量:1

The Size and Space Arrangement Roles on Coercivity of Electrodeposited Co Nanowires
下载PDF
导出
摘要 研究了室温下不同直径的Co纳米线在不同取向下的磁化行为.实验结果表明:不同直径Co纳米线的矫顽力随着纳米线与外加磁场之间角度θ的增大而减小.理论上,应用蒙特卡罗模拟研究了纳米线矫顽力对角度θ的依赖关系.对比理论和实验的结果,得到如下结论:磁晶各向异性对Co纳米线磁特性起着重大的影响,Co纳米线的磁化反转过程不能简单地用球链模型中经典的一致转动模型来解释. Magnetization curves with various magnetic field orientations and nanowire diameters were measured at room temperature. The measured coercivity as a function of angle θ between the field and wire axis reveals that the coercivity decreases with increasing the value of θ for various nanowires. Theoretically, based on Monte Carlo simulation, we investigated the magnetization reversal modes of the Co nanowires and obtained also the θ dependence of coercivity. Comparing the simulated with the experimental results, it is found find that the magnetocrystalline anisotropy plays an important role on the magnetic properties of Co nanowires, and the magnetization reversal process in the Co nanowires could not be understood by the classi cal uniform rotation mode in the chain-of-sphere model.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期46-49,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(A0510013) 福建师范大学2004-2005学年"本科课外科技计划"立项项目(BKL2005-004)
关键词 阳极氧化铝模板 磁化反转模型 纳米线 矫顽力 蒙特卡罗模拟 磁晶各向异性 一致转动 Anodic alumina template (AAT) magnetization reversal model~ nanowires coercivity Monte Carlo simulation magnetocrystalline anisotropy uniform rotation
  • 相关文献

参考文献12

  • 1Sven Matthias, Jorg Schilling, Kornelius Nielsch, et al. Monodisperse diameter-modulated gold microwires [J]. Adv Mater, 2002,14 (22): 1618-1621.
  • 2Jinsub Choi, Guido Sauer, Kornelius Nielsch, et al. Hexagonally arranged monodisperse silver nanowireswith adjustable diameter and high aspect ratio [J]. Chem Mater, 2003, 15 (3):776-779.
  • 3Paulus P M, Luis F, Kroll M, et al. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires [J]. J Magn Magn Mater, 2001, 224 (2): 180-196.
  • 4Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodie alumina [J]. Appl Phvs Lett, 1998, 72 (10) : 1173-1175.
  • 5Binder K, Heermann D W. Monte Carlo Simulation in Statistical Physics [M]. Second Corrected Edition Berlin: Springer, 1992.
  • 6Huang Zhigao, Chen Zhigao, Peng Kun, et al. Monte carlo simulation of tunneling magnetoresistance in nanostructured materials [J]. Phys Rev B, 2004, 69 (9). 094420.
  • 7Huang Zhigao, Chen Zhigao, Zhang Fengming, et al. Magnetization and configuration anisotropy in magnetic clusters: Monte Carlo simulation [J]. Eur Phys J B, 2004, 37 (2): 177-185.
  • 8Zeng H, Skomski R, Menon L, et al. Structure and magnetic properties of ferromagnetic nanowires in selfassembled arrays [J]. Phys Rev B, 2002, 65 (13): 134426-134433.
  • 9Jacobs I S, Bean C P. An approach to elongated fine-particle magnets [J]. Phys Rev, 1955, 100 (4) : 1060-1067.
  • 10Hideo Daimon, Osamu Kitakami. Magnetic and crystallographic study of Co electrodeposited alumite films [J]. J Appl Phys, 1993, 73 (10): 5391-5393.

同被引文献14

  • 1张可言,袁敏,郑瑞伦.晶格振动和晶粒尺度对磁记录膜矫顽力的竞争影响研究[J].原子与分子物理学报,2004,21(4):637-641. 被引量:2
  • 2孙敬伟,李世强,张美华.二维磁畴结构形成的蒙特卡洛方法研究[J].信息记录材料,2006,7(3):32-35. 被引量:2
  • 3王秋芬,严慧羽,宋庆功.铁磁性纳米线阵列磁滞回线的模拟[J].中国民航学院学报,2006,24(4):52-54. 被引量:4
  • 4Chou S Y, Krauss P R, Kong L . Nanolithographically defined magnetic structures and quantum magnetic disk [J]. J. Appl. Phys., 1996, 79: 6101-6104.
  • 5Ross C A, Smith Henry I, Savas T, et al. Fabrication of patterned media for high density magnetic storage [ J]. J. Vac. Sci. Technol. B, 1999, 17: 3168-3176.
  • 6Vazquez M, Nielsch K, Vargas P, et al. Modling hysteresis of interacting nanowires arrays [ J]. Physica B, 2004, 343: 395-402.
  • 7Sampaio L C, Sinnecker E H C P, Cernicchiaro G R C, et al. Magnetic microwires as macrospins in long-range dipole_dipole interaction [J]. Phys. Rev. B, 2000, 61: 8976 - 8983.
  • 8Hwang M, Farhoud M, Hao Y, et al. Major hysteresis loop modeling of two-dimensional arrays of single domain particles [J]. IEEE Trans. Magn. 2000, 36: 3173- 3175.
  • 9Guo Z Z, Wu Xiaowei. Damage Spreading on the homoand hetero-cell lattices with competing Glauber and Kawasaki dynamics [J]. Int. J. Mod. Phys. B, 2008, 21, in press.
  • 10Bennett A J, Xu J M. Simulating the magnetic susceptibility of magnetic nanowire arrays [ J ]. Appl. Phys. Lett. , 2003, 82:3304-3306.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部