期刊文献+

Heisenberg群上次椭圆p-Laplace方程的增长性估计(英文) 被引量:1

Growth estimates to subelliptic p-Laplace equations on Heisenberg group
下载PDF
导出
摘要 首先利用Heisenberg群上的Hardy型不等式,通过基本的微积分运算建立了若干不等式,然后建立了次椭圆p-Laplace方程的解在原点附近的增长性估计.最后给出了具有广义有限能量的函数的L^p-估计. Using an Hardy type inequality on the Heisenberg group, some inequalities 'are derived through elementary calculus. Then growth estimates for solutions of subelliptic p-Laplacian with p 〉 1 at origin are constructed. Finally, L^p estimates of functions having finite energy are constructed.
出处 《中国科学院研究生院学报》 CAS CSCD 2007年第1期18-24,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 supported by the National Natural Science Foundation of China(10371099)
关键词 次椭圆p-Laplace算子 HEISENBERG群 L^P-估计 HARDY不等式 subelliptic p-Laplacian, Heisenberg group, L^p estimate, Hardy inequality
  • 相关文献

参考文献12

  • 1Birindelli I, Cutri A. A semi-linear problem for the Heisenberg Laplacian. Rend Sere Mat Univ Padova, 1995, 94:1 - 17
  • 2Brandolini L, Rigoll M, Setti AG. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements of Amer Math Soc, 1996, 2(3): 101-107
  • 3D'Ambrosio L. Hardy type inequalities related to second order degenerate differential operators. Ann Scuola Norm Sup Pisa Cl Sci Ser, 2005, 4(5): 1-35
  • 4D'Ambrosio L. Some Hardy inequalities on the Heisenberg group. Differential Equations,2004, 40(4) : 552 - 564
  • 5Niu P, Zhang H. Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operator. Pacific J Math, 2003, 208: 325 -345
  • 6Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the unceflalnty principle and unique continuation. Ann lnst Fourier Grenoble, 1990, 40(2) : 313 -356
  • 7Niu P, Zhang H, Wang Y. Hanty type and Rellich type inequalities on the Heisenberg group. Proc Amer Math Soc, 2001, 129(12) : 3623 - 3630
  • 8Cygan J. Subaddltivity of homogeneous norms on certain nilpotcnt Lie groups. Proc Amer Math Soc, 1981, 83(1) : 69 - 70
  • 9Cygan J. Subaddltivity of homogeneous norms on certain nilpotcnt Lie groups. Proc Amer Math Soc, 1981, 83(1) : 69 - 70
  • 10Flecklnger J, Harrell Ⅱ EM, de Thglin Franqois. Boundary behavior and estimates for solutions of equations containing the p-Laplacian. Electron J Differential Equation, 1999, 38:1 -19

同被引文献18

  • 1窦井波,钮鹏程.Heisenberg群上p-sub-Laplace不等方程弱解的不存在性[J].吉林大学学报(理学版),2006,44(2):163-169. 被引量:1
  • 2Zhang J,Niu P.Existence for the positive solutions of semilinear equations on the Heisenberg group.Nonlinear Anal,1998,31:181 - 189.
  • 3Niu P,Zhang H.Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators.Pacific J Math,2003,208 (2):325 - 345.
  • 4Folland GB,Stein EM.Estimaties for the (の)-complex and analysis on the Heisenberg group.Comm Pure Appl Math,1974,27:429 - 522.
  • 5Capogna L,Danielli D,Garofalo N.An embedding theorem and the Harnack inequality for nonlinear subelliptic equations.Comm PDE,1993,18:1765 - 1794.
  • 6Niu P,Zhang H,Wang Y.Hardy type and Rellich type inequalities on the Heisenberg group.Proc Amer Math Soc,2001,129(12):3623 - 3630.
  • 7Allegretto W,Huang YX.Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces.Funkc Ekvac,1995,38:233 - 242.
  • 8Drábek P.Nonlinear eigenvalue problem for p-Laplacian in Rn.Math Nachr,1995,173:131 - 139.
  • 9Drábek P,Moudan Z,Touzani A.Nonlinear homogeneous eigenvalue problem in Rn:nonstandard variational approach.Comm Math Univ Carolinae,1997,38(3):421 - 431.
  • 10Huang YX.Eigenvalues of the p-Laplacian in with indefinite-weight,Comm Math Univ Carolinae,1995,36(3):519 - 527.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部