期刊文献+

无限大平面中斜裂纹的压剪断裂分析 被引量:6

COMPRESSION AND SHEAR FRACTURE ANALYSIS OF SLANTING CRACKS IN INFINITE PLANES
下载PDF
导出
摘要 根据Muskhelishvili的复势理论,结合裂面边界条件和位移单值条件,将无限大平面受压应力作用的裂纹问题转化为对应的Hilbert问题,并运用复变函数法分别给出了在伪集中力作用下,不同裂面形态的基本解。对不同裂面形态的摩擦力大小和分布进行了详细分析,建立了新的摩擦力计算模型。采用“伪力法”和叠加原理,结合所求的基本解,给出了含中心斜裂纹的岩石类材料在压缩荷载作用下的应力强度因子(SIF)的解法。研究表明:裂面状态对KⅠ的大小没有影响,而对KⅡ的影响却很大,相同应力条件下,裂面状态会影响裂纹的开裂角和开裂方式。 Based on Muskhelishvili's complex potential theory and using the boundary conditions on crack faces and the single value condition of displacement in an infinite plane, the crack problem under compressive loadings is transformed into a Hilbert problem and the fundamental solutions for cracks with different surface patterns due to concentrated pseudo-tractions are derived. For different surface patterns, the value and the distribution condition of the shear stress are analyzed in detail, and a new computing model is developed. With the aid of the pseudo-traction method, the superposition technique and the presented fundamental solutions, a method to obtain the stress intensity factors (SIFs) for materials such as rock with central inclined cracks under compressive loading is proposed. The study indicates that the surface pattern has no effect on KI, but has obvious effect on KⅡ. Under the same condition, both the breaking angle and the breaking mode of cracks are affected by different surface patterns.
出处 《工程力学》 EI CSCD 北大核心 2006年第12期59-62,58,共5页 Engineering Mechanics
基金 陕西省自然科学基金资助项目(2002A05)
关键词 裂面形态 基本解 伪力 叠加原理 应力强度因子 crack surface form the fundamental solution pseudo-force the superposition technique stress intensity factor
  • 相关文献

参考文献12

  • 1Brace M F,Paulding B W,Scholz C.Dilatancy in the fracture of crystalline rocks[J].J Geophys Res,1966,71(12):3939~3953.
  • 2Kuntz M,Lavallee P,Mareschal J C.Steady state flow experiments to visualise the stress field and potential crack trajectories in 2D elastic-brittle cracked media in uniaxial compression[J].Int.J.Fract.,1998,92(3):349~357.
  • 3赵明阶,徐蓉.裂隙岩体在受荷条件下的变形特性分析[J].岩土工程学报,2000,22(4):465-470. 被引量:8
  • 4周群力,佘泳琼,王良之.岩石压剪断裂核的试验研究[J].固体力学学报,1991,12(4):329-336. 被引量:15
  • 5Shen B,Stephansson O.Numerical analysis of mixed mode Ⅰ and mode Ⅱ fracture propagation[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1993,30(7):861~867.
  • 6Wang Qizhi.Some simple mode-Ⅰ SIF expressions of finite width strip with a center crack derived by using an approximate weight function[J].Eng.Fract.Mech.,1998,60(1):37~45.
  • 7Bobet A.The initiation of secondary cracks in compression[J].Engug Fract.Mech,2000,66(2):187~219.
  • 8Dong S,Wang Y,Xia Y.Stress intensity factors for central cracked circular disk subjected to compression[J].Engug Fract.Mech.,2004,71:1135~1148.
  • 9Hammouda M M I,Fayed A S,Sallam H E M.Mode Ⅱ stress intensity factors for centeal slant cracks with frictional surfaces in uniaxially compressed plates[J].Int.J.Fatigue,2002,24:1213~1222.
  • 10Steffler E D,Epstein J S,Conley E G.Energy partitioning for a crack under remote shear and compression[J].Int.J.Fract.,2003,120:563~580.

二级参考文献5

共引文献21

同被引文献52

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部