期刊文献+

基于最小二乘支持向量机的传感器动态系统辨识方法 被引量:6

A Dynamic System Identification Method for Sensors Based on LS-SVM
下载PDF
导出
摘要 在介绍和比较标准支持向量机(SVM)和最小二乘支持向量机(LS-SVM)原理的基础上,提出了一种利用LS-SVM模型进行传感器动态系统辨识的方法,并给出了相应的过程和算法。与标准SVM模型比较,该方法优点是明显的:(1)用等式约束代替标准SVM算法中的不等式约束;(2)将求解二次规划问题转化为直接求解线性矩阵方程,使得在相同条件下,系统辨识速度提高1~2个数量级,辨识误差降低50%。因此,LS-SVM模型速度快,抗噪声干扰能力强,更适合传感器动态系统建模。 Based on introducing and comparing standard support vector machine (SVM) and least squares support vector machine ( LS-SVM), an identification method of sensors dynamic systems using LS-SVM model was given. The design steps and learning algorithm were also addressed. Compared with standard SVM model, there were some advantages of this method : 1 ) the constraints of inequalities were replaced by equality-type constraints in LS-SVM. 2)the LS-SVM solution followed directly from solving a set of linear equations instead of quadratic pro- gramming. In the same condition, the speed of identification was 10 ~10^2 times than that of standard SVM method, while the error of identification was about 50% of the SVM method. As a result, the presented method is faster in learning speed, higher in accuracy, more robust in noise resistance. So it is more suitable for sensors dynamic system identification.
出处 《电子测量与仪器学报》 CSCD 2006年第6期36-40,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金资助项目(编号:70272032)
关键词 支持向量机 最小二乘支持向量机 传感器 系统辨识 support vector machine (SVM), least squares support vector machine (LS-SVM), sensors, system identification.
  • 相关文献

参考文献7

  • 1徐科军,殷铭.基于FLANN的腕力传感器动态建模方法[J].仪器仪表学报,2000,21(1):92-94. 被引量:28
  • 2田社平,姜萍萍,颜国正.应用递推神经网络的传感器动态建模研究[J].仪器仪表学报,2004,25(5):574-576. 被引量:13
  • 3Vapnik V.The Statistical Learning Theory[M].New Yerk:Jonn Wiley,1998.
  • 4Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5Vapnik V.An overview of statistical learning heory[J].IEEE Transon Neural Networks,1999,10(5):988-999.
  • 6Suykens J A K,Vandewalle J.Sparse least squares support vector machine classifiers[A].European symposium on artificial neural networks[C].Bruges Belgium,2000,4:37-42.
  • 7Suykens J A K,Lukas L,Vandewalle J,Sparse approximation using least squares support vector machine[A].IEEE Int Symposium on Circuitsand Systems[C].Geneva,2000,Ⅱ:757-760.

二级参考文献6

共引文献35

同被引文献54

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部