期刊文献+

基于鲁棒支持向量机的光谱解译 被引量:1

Spectral unmixing based on robust support vector machine
下载PDF
导出
摘要 在传统基于线性光谱混合模型的光谱解译方法中,模型自身的不足以及在光谱解译过程中无关类别的参与都影响着解译效果。为此,提出一种基于支持向量机并结合空间信息的光谱解译方法。首先创建一种具有鲁棒特性的线性最小平方支持向量机(LLSSVM),并将其应用于初次光谱解译;然后利用空间信息进行智能性纯像素判定、解译结果校正,并对混合像素进行相关类别选择;最后再次应用LLSSVM在相关类别内进行二次解译。仿真试验中,本文方法比传统方法在解译精度上提高了10%,表明了该方法具有良好的解译效果。 In traditional spectral unmixing method based on linear spectral mixing model (LSMM), unmixing accuracy is deteriorated both by the deficiency of the model and the participation of unrelated classes. Therefore, to solve this problem, a method with spatial information considered was proposed based on linear least square support vector machines (LLSSVM). A robust LLSSVM was constructed and then applied to spectral unmixing. Then pure pixels were determined and unmixing results were corrected with related classes selection for each mixing pixel. Ultimately LLSSVM was used again for spectral unmixing with only related classes considered. Simulation results indicate that the unmixing accuracy of the proposed method is improved by 10 % higher than that of the traditional methods and is also high in efficiency.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第1期155-159,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60302019 60672034) 高等学校博士学科点专项科研基金资助项目(20060217021)
关键词 计算机应用 通信技术 光谱解译 线性最小平方支持向量机 线性光谱混合模型 空间信息 鲁棒性 computer application communication spectral unmixing linear least square support vector machines(LLSSVM) linear spectral mixing models(LSMM) spatial information robustness
  • 相关文献

参考文献10

  • 1Keshava N,Mustard J F.Spectral unmixing[J].IEEE Transactions on Signal Processing Magazine,2002,19 (1):44-57.
  • 2Winter M E,Lucey P G,Steuter D.Examining hyperspectral unmixing error reduction due to stepwise unmixing[J].Proceedings of SPIE-the International Society for Optical Engineering,2003,5093:380-389.
  • 3何青,熊桢.基于邻域的混合象元解译[J].北方交通大学学报,1999,23(4):118-121. 被引量:3
  • 4Luo J W,Roger L K,Nicolas Y.An unmixing algorithm based on vicinal information[C]//Geoscience and Remote Sensing Symposium,2002:1453-1455.
  • 5Martin B,Hugh G L,Steve R G.Linear spectral mixture models and support vector machines for remote sensing[J].IEEE Trans on Geoscience and Remote Sensing,2000,38(5):2346-2360.
  • 6Brown M,Gunn S R,Lewis H G.Support vector machines for optimal classification and spectral unmixing[J].Ecol Modeling,1999,120:167-179.
  • 7Vapnik V N.The nature of statistical learning theory[M].New York:Springer Press,1995.
  • 8Song Q,Hu W J,Xie W F.Robust support vector machine with bullet hole image classification[J].IEEE Trans on Man and Cybernetics Systems,Part C,2002,32(4):440-448.
  • 9Suykens J A K,Brabanter J D,Lukas L.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48 (t):85-105.
  • 10Hassan Emami.Introducing correctness coefficient as an accuracy measure for sub pixel classification results[EB/OL].[2005-12-06] http://www.ncc.org.ir/articles/poster83/.Emami.pdf.

二级参考文献5

共引文献2

同被引文献33

引证文献1

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部