期刊文献+

Brusselator系统的Hopf分岔 被引量:1

Hopf Bifurcation in Brusselator System
下载PDF
导出
摘要 本文主要研究Brusselator系统的动力行为.首先,分析了系统产生Hopf分岔的原因,然后详细讨论了Brusselator系统平衡点的稳定性,并且证明了Brusselator系统当临界平衡点失稳时会产生超临界Hopf分岔,即从平衡点处分岔出稳定的极限环,进而得到了Brusselator系统出现Hopf分岔所需的参数条件;最后,数值模拟的结果显示了与理论分析的一致性. The dynamical behavior of Brusselator system was considered. The mathematical mechanism of Hopf bifurcation was analyzed, and the stability of equilibrium was disscussed in detail. When the critical equilibrium loses its stability, supercritical Hopf bifurcation occurs. Hence, a stable periodic orbit bffrcates from the critical equilibrium. At the same time, the condition of parameter to ensure the appear of Hopf bifurcation in Bmsselator system was obtained. The result of numerical simulatior correspondented with that of theoretical analysis.
出处 《山东科学》 CAS 2007年第1期19-24,29,共7页 Shandong Science
关键词 HOPF分岔 平衡点 稳定性 特征值 Hopf bifurcation equilibrium stability eigenvalue
  • 相关文献

参考文献8

  • 1MOGHADAS S M.GUME A B.Dynamical and Numerical Analyses of a Generalized Food-Chain Mode[J].Applied Mathematics and Computation,2003,142:35-49.
  • 2DING Q,COOPER J E,LEUNG A Y T.Hopf Bifurcation Analysis of a Rotor/Seal System[J].Journal of Sound and Vibration,2002,252(5):817-833.
  • 3WANG D,RUAN G.Bifurcations in an Epidemic Model with Constant Removal Rate of the Infectives[J].J.Match.Anal.Appl,2004,291:775-793.
  • 4JING Z J,CHANG Y,GUO B L.Bifurcation and Chaos in Discrete FitzHugh-Nagumo System[J].Chaos,Solitons and Fractals,2004,21:701-720.
  • 5WEI J J.Hopf Bifurcation Analysis for a Delayed Vicholson Blowflies Equation[J].Nonlinear Analysis,2005,60:1351-1367.
  • 6SONG Y L,WEI J J,YUAN Y.Bifurcation Analysis on a Survival Red Blood Cells Mode[J].J.Math.Anal.Appl,2006,316:459-471.
  • 7FERDINAND Verhulst.Nonlinear Differential Equations and Dynamical System[M].New York:Springer,1996:173-192.
  • 8KUZNETSOV.Y A.Elements of Applied Bifurcation Theory[M].New York:Springer,1997:86-100.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部