期刊文献+

氮气辅助微粒形成技术制备脂肪酸微粒 被引量:2

N_2-assisted Particle Formation to Micronize Fatty Acids
下载PDF
导出
摘要 建立气体饱和溶液微粒形成技术的实验装置,研究在N2辅助下利用该装置获取脂肪酸(月桂酸和肉豆蔻酸)微粒,探讨预膨胀压力、预膨胀温度和喷嘴直径对脂肪酸微粒的粒径以及粒径分布的影响.结果表明,用N2取代CO2可以获取平均直径约10~50μm.形貌基本上为球形的脂肪酸微粒.对两种脂肪酸微粒化的研究表明,在实验考察的压力范围内,微粒的平均粒径随着预膨胀压力的增大而明显减小.其粒径分布随压力的升高而变窄.对月桂酸微粒化的研究表明.随预膨胀温度的升高,微粒平均直径略微增大,粒径分布相差不多.对肉豆蔻酸微粒化的研究表明.微粒的平均粒径随着喷嘴直径减小而减小,其粒径分布随喷嘴直径减小而变窄. An apparatus for particle formation from gas-saturated process was established; the micronization of two fatty acids (lauric acid and myristic acid) was implemented by using this apparatus and using N2 instead of CO2 in order to obtain lipid particles from pure atomization mechanism. The effects of the pre-expansion pressure, pre-expansion temperature and nozzle size on the produced fatty acid particles were investigated. Results showed that the N2-assisted particle formation process could produce spherical particles with mean sizes of 10-50μm. Increasing the pre-expansion pressure from 4 MPa to 12 MPa could narrow the size distributions of the produced particles and evidently decrease the mean sizes from 40μm to 18μm for lauric acid and from 25μm to 9μm for myristic acid at fixed pre-expansion temperature (323 K for lauric acid and 333 K for myristic acid) and with fixed nozzle size (120 μm for lauric acid and 100μm for myristic acid). Increasing the pre-expansion temperature from 323 K to 343 K could increase slightly lauric acid particle sizes and shows little effect on the particle size distribution at 333 K using the 100 μm nozzle. Decreasing the nozzle size from 120μm to 60μm could narrow the size distributions of the produced myristic particles and decrease the mean sizes from 10μm to 7μm at pre-expansion temperature 333 K and pre-expansion pressure 12 MPa.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期72-76,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(20406015)资助
关键词 氮气 微粒 脂肪酸 雾化 nitrogen microparticle fatty acid atomization
  • 相关文献

参考文献5

  • 1Li J,Matos H A,Gomes de Azevedo E.Proceedings of the Sixth International Symposium on Supercritical Fluids[C].France:Versailles,2003.
  • 2Li J,Matos H A,Gomes de Azevedo E.Two-phase homogeneous model for particle formation from gas-saturated solution processes[J].The Journal of Supercritical Fluids,2004,32(1/3):275-286.
  • 3Li J,Rodrigues M A,Matos H A,et al.Modeling of the PGSS process by crystallization and atomization[J].AIChE J,2005,51(8):2345-2357.
  • 4梁晓燕,卢平,章名耀.气泡雾化喷嘴及其喷雾特性[J].能源研究与利用,2004(2):17-20. 被引量:4
  • 5张岩,陈岚,李保国,华泽钊,伍贻文,刘哲鹏,陆伟跃.超临界CO_2喷雾干燥制备乙基纤维素微粒的实验研究[J].农业工程学报,2004,20(5):186-190. 被引量:2

二级参考文献17

  • 1Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey[J]. The Journal of Supercritical Fluids, 2001,20 : 179- 219.
  • 2Santos I, Richard J, Pech B, et al. Microencapsulation of protein particles within lipids using a novel supercritical fluid process[J]. International journal of pharmaceutics,2002,242:69-78.
  • 3Sieves R E, Karst U, Milewski P D, et al. Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide[J]. Aerosol science and technology. 1999,30:3-15.
  • 4Debenedetii P G, Lim G B, Prudhomme R K. Formation of protein microparticles by antisovent precipitation[P].European Patent, 0542314A1, 1992.
  • 5Kompella U B, Koushik K. Preparation of drug delivery systems using supercritical fluid technology [J]. Critical Reviews in Therapeutic Drug Carrier System, 2001, 18:173-199.
  • 6Hile D, Mary L, Amirpour A, et al. Active growth factor delivery from poly (D, L-lactide-co-glycolide) foams prepared in supercritical CO2 [J]. Journal of controlled release. 2000,66:177- 185.
  • 7Thiering R, Dehghani F, Dillow A. Solvent effects on the controlled dense gas precipitation of model proteins[J].Journal of chemical technology and biotechnology, 2000,75:42-53.
  • 8Reverchon E. Supercritical antisolvent precipitation of micro-and nano-particles[J]. The journal of supercritical fluids,1999,15:1-21.
  • 9Thiering R, Dehghani F, Dillow A. The influence of operating conditions on the dense gas precipitation of model proteins [J]. Journal of chemical technology and biotechnology, 2000,75,29- 41.
  • 10Heater K, Tomasko D. Processing of epoxy resins using carbon dioxide as an antisolvent [J]. The journal of supercritical fluids, 1998,14: 55- 65.

共引文献4

同被引文献17

  • 1赵亚冬,苏玉忠,王宏涛,李军.气体饱和溶液微粒形成技术[J].化学工程与装备,2006(1X):1-5. 被引量:3
  • 2Reverchon E. Supercritical antisolvent precipitation of micro- and nano-particles[J]. Journal of Supercritical Fluids,1999,15(1) :1-21.
  • 3Moribe K,Tsutsumi S, Morishita S, et al. Mieronization of phenylbutazone by rapid expansion of supereritieal CO2 solution[J]. Chemical & Pharmaceutical Bulletin,2005,53 (8) : 1025-1028.
  • 4Palakodaty S,York P. Phase behavioral effects on particle formation processes using supercritical fluids[J]. Pharmaceutical Research, 1999,16(7):976 -985.
  • 5Munuklu P, Jansens P J. Particle formation of an edible fat(rapeseed 70) using the supereritieal melt mieronization(ScMM) process[J]. Journal of Supercritical Fluids, 2007,40(3) :433-442.
  • 6Nalawade S P, Picchioni F,Janssen L P B M. Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent[J]. Chemical Engineering Science, 2007,62 (6):1712-1720.
  • 7Knez Z,Weidner E. Particles formation and particle design using supercritical fluids [J]. Current Opinion in Solid State and Materials Science, 2003,7 (4/5) : 353-361.
  • 8Li J, Rodrigues M A, Matos H A, et al. Modeling of the PGSS process by crystallization and atomization [ J]. AIChE Journal, 2005,51(8) : 2345-2357.
  • 9Zhao L, Li J, Rodrigues M A, et al. Using N2- or CO2- assisted atomization process to produce polyethylene glycol mieropartieles[J]. Chemical Engineeriing Research & Design, 2007,85 (AT) : 987 - 995.
  • 10Neil R. Foster,Fariba Dehghani,Kiang M. Charoenchaitrakool,Barry Warwick.Application of dense gas techniques for the production of fine particles[J]. AAPS PharmSci . 2003 (2)

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部