摘要
用蛛网图、迭代函数图、周期分叉图以及分布直方图等几何图像研究了L og istic模型的迭代轨道,研究了非线性迭代轨道进入混沌状态的条件.
Non-linear difference equations arise in many contexts in the biological, economic ancl social sciences. Such equations, even though simple, can exhibit a surprising array of dynamical behavior, Here we study the non-linear difference equation by means of geometrical graph. So we can see bifurcation phenomenon and other geometrical character. These will help us to understand dynamical behavior of chaos.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第1期89-94,共6页
Mathematics in Practice and Theory
关键词
非线性模型
迭代轨道
倍周期分叉
non-linear
iterative trsjectory
period-doubling bifurcation