摘要
The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.
The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.
基金
Project supported by a grant from Department of Education of Zhejiang Province (20060496)