摘要
聚类是有广泛应用的基本数据挖掘任务.现实生活中大多数的数据是高维的,并且通常相关信息分布在多重关联上.为了保证高效的高维、交叉关联聚类.本文提出了一个有效方法:交叉聚类(CrossClus),该法在用户的指导下执行,既考虑了特征提取的质量,又考虑了聚类的效率.
Clustering is an essential data mining task with numerous applications. Data in most real-life applications are high-dimensional, and the related information often spreads across multiple relations. To ensure effective and efficient high-dimensional, cross-relational clustering, we propose a new approach, called CrossClus, which per-forms cross-relational clustering with user's guidance. This method takes care of both quality in feature extraction and efficiency in clustering.
出处
《赣南师范学院学报》
2006年第6期101-104,共4页
Journal of Gannan Teachers' College(Social Science(2))
关键词
数据挖掘
聚类
相关数据库
data mining, clustering, relational databases.