期刊文献+

基于用户的交叉关联聚类

User-based Cross-Relational Cluster
下载PDF
导出
摘要 聚类是有广泛应用的基本数据挖掘任务.现实生活中大多数的数据是高维的,并且通常相关信息分布在多重关联上.为了保证高效的高维、交叉关联聚类.本文提出了一个有效方法:交叉聚类(CrossClus),该法在用户的指导下执行,既考虑了特征提取的质量,又考虑了聚类的效率. Clustering is an essential data mining task with numerous applications. Data in most real-life applications are high-dimensional, and the related information often spreads across multiple relations. To ensure effective and efficient high-dimensional, cross-relational clustering, we propose a new approach, called CrossClus, which per-forms cross-relational clustering with user's guidance. This method takes care of both quality in feature extraction and efficiency in clustering.
作者 黄颖 刘发升
出处 《赣南师范学院学报》 2006年第6期101-104,共4页 Journal of Gannan Teachers' College(Social Science(2))
关键词 数据挖掘 聚类 相关数据库 data mining, clustering, relational databases.
  • 相关文献

参考文献5

  • 1L. Kaufman, P.J. Rousseeuw. Finding Croups in Data: an Introduction to Cluster Analysis[M]. John Wiley and Sons, 1990.
  • 2K. Wagstaff. C. Cardie, S. Rogers, S. Sehroedl. Constrainedk-means clustering with haekground knowledge. ICML, 2001.
  • 3H. Kim, S. Lee. A semi-supervised document clustering technique for information organization. CIKM, 2000.
  • 4R.T. Ng, J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. VLDB, 1994.
  • 5E. P. Xing, A. Y. Ng, M. I. Jordan, S. Russell. Distance mettle learning, with application to clustering with side-information. NIPS, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部