期刊文献+

广义不确定关系与整体单极黑洞Dirac场的熵 被引量:4

The generalized uncertainty relation and Dirac field entropy of black hole with an internal global monopole
原文传递
导出
摘要 将广义不确定关系引入新的态密度方程,采用WKB近似方法,对含整体单极黑洞Dirac场的熵进行了直接计算,所得黑洞熵与它的视界面积成正比,以此揭示了黑洞熵是其视界面处量子态的熵.与brick-wall模型方法不同,该结果不需要取任何截断.同时表明,用此方法不仅可以计算黑洞标量场的熵,而且可以计算Dirac场的熵. The generalized uncertainty relation is considered in the new equation of state density. Using the WKB approximation, Dirac field entropy of the horizon of the black hole with an internal global monopole is calculated directly. The result shows that the black hole entropy is proportional to the horizon area, which brings to light the relationship between the black hole entropy and the entropy of quantum state near the event horizon. The difference from the brick-wall model is that the present result is convergent without any cutoff. It is indicated that this method can be used to calculate the entropy of the scale field of black hole, and it can be extended to calculate the entropy of Dirac field.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第1期10-14,共5页 Acta Physica Sinica
关键词 黑洞 广义不确定关系 Dime场 black hole, the generalized uncertainty relation, Dirac field, entropy
  • 相关文献

参考文献19

  • 1Ashtekar A, RoveUi G, Smolin L 1992 Phys. Rev. Lett. 69 237.
  • 2Gross D J, Mende P F 1988 Nucl. Phys. B 303 407.
  • 3Garay L J 1995 Mod, Phys. A 10 145.
  • 4Maggiore M 1993 Phys. Lett. B 319 83.
  • 5Amati n D, Ciafaloni M, Veneziano G 1987 Phys. Lett. B 197 81.
  • 6Chang L N 2002 Phys. Rev. D 65 125028.
  • 7Li X 2002 Phys . Lett . B 540 9.
  • 8Yu H W 1993 Phys. Lett. A 182 353.
  • 9Newman E, Penrose P 1962 J. Math. Phys. 3 566.
  • 10Gao C J, Shen Y G 2001 Chin. Phys. Lett. 18 1167.

二级参考文献27

  • 1[1]Bekenstein J D 1973 Phys. Rev. D 7 2333
  • 2[2]Bardeen J M, Carter B and Hawking S W 1973 Math. Phys. 31161
  • 3[3]Hawking S W 1975 Commun. Math. Phys. 43 199
  • 4[4]'t Hooft G 1985 Nucl. Phys. B 256 727
  • 5[5]Gao C J and Liu W B 2000 Int. J. Theor. Phys. 39 2221
  • 6[6]Li X and Zhao Z 2000 Phys. Rev. D 62 104001
  • 7[8]Gao C J and Shen Y G 2001 Chin. Phys. Lett. 18 1167
  • 8[9]Liu W B and Zhao Z 2001 Chin. Phys. Lett. 18 310
  • 9[15]Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D52 1108
  • 10[16]Adler R J, Chen P and Santiago D I 2001 Gen. Rel. Grav. 332101

共引文献71

同被引文献23

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部