期刊文献+

掺杂下铁磁/反铁磁双层膜中交换偏置的增强 被引量:4

Enhanciement of exchange bias with diluted antiferromagnets in FM/AFM bilayers
原文传递
导出
摘要 采用了Monte-Carlo方法,讨论了反铁磁层中不同非磁性掺杂浓度下,铁磁/反铁磁双层膜中交换偏置的温度特性.模拟结果显示:反铁磁层中非磁性掺杂能导致铁磁/反铁磁双层膜中交换偏置的增强.同时,交换偏置随非磁性掺杂浓度的变化存在极大值,即同一温度下交换偏置随掺杂浓度的变化是非单调的.并且,随着温度的升高交换偏置的最大值所对应的掺杂浓度向浓度低的方向移动.它和HongJung-Il等人的实验结果完全一致.究其原因在于反铁磁层相应的自旋排布、磁畴结构等随掺杂浓度的改变发生大的变化,当其正向磁畴和负向磁畴都形成连通的网络结构时,系统的交换偏置达最大.比较了随机掺杂与规则掺杂的模拟结果.模拟结果表明规则掺杂能够获得比随机掺杂更大的交换偏置,进一步表明了铁磁/反铁磁双层膜中交换偏置的特性与铁磁/反铁磁界面磁畴结构密切相关. Based on Monte Carlo method, the characteristic of exchange bias is discussed in diluted antiferromagnets in FM/AFM bilayers by changing the dilute concentration. The simulation results show that the exchange bias in FM/AFM bilayers can be enhanced significantly by introducing nonmagnetic atoms into the AFM layers. And there is a maximum in the diagram of exchange bias as a function of the dilute concentration, i .e., the exchange bias at first increases then decreases with increasing concentration of dilution at the same temperature. Besides, the maximum of the exchange bias occurs at lower concentration for higher temperature. These are consistent with the results of Phys. Rev. Left. 96 117204 (2006). The cause of these results is that the spin distribution and the magnetic domain structure change greatly when varying dilute concentration. The exchange bias is maximal when the positive and the negative magnetic domains form a connected network. In addition, at the same concentration of dilution, by comparing the results of the random and regular dilution, we find that the exchange bias are more strongly increased by regular dilution than by random dilution for the FM/AFM bilayers, which shows further that the characteristic of exchange bias in FM/AFM bilayers depends on the interface spin-microstructure.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第1期529-534,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10347118) 江苏省高校自然科学基金(批准号:2006KJB140133)资助的课题~~
关键词 Monte—Carlo方法 随机掺杂 规则掺杂 交换偏置和矫顽场 Monte-Carlo method, random doping, regular doping, exchange bias and coercivity
  • 相关文献

参考文献24

  • 1Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413.
  • 2Dieny B 1994 J. Mogn. Magn. Mater 136 335.
  • 3Nogues J, Schuller I K 1999 J. Magn Magn Mater 192 203.
  • 4Lin T, Maurl D, Hwang N C, Howard J K, Gorman G L 1994 Appl. Phys. Lett. 65 11839.
  • 5Fujiwara H, Nishioka K, Hou C, Parker M R, Gangopadhyay S,Metzger R 1996 J, Appl, Phys, 79 6286.
  • 6Wu X W, Chien C L 1998 Phys. Rev. Lett. 81 2795.
  • 7Hou C H, Fujiwara H, Metager R D 1996 J. Appl. Phys. 80 4528.
  • 8Qian Z H, Sicertsen J M, Judy J H 1998 J. Appl. Phys. 83 6825.
  • 9Yu G H, Chai C L, Zhu F W 2001 Appl. Phys. Lett. 78 1706.
  • 10姜宏伟,李明华,王艾玲,郑鹉.NiFe/FeMn双层膜的交换耦合[J].物理学报,2004,53(4):1232-1235. 被引量:5

二级参考文献49

  • 1[1]Grunberg P, Schreiber R, Pang Y et al 1986 Phys.Rev.Lett. 57 2442
  • 2[2]Baich M N, Broto J M, Fert A et al 1988 Phys.Rev.Lett. 61 2472
  • 3[3]Parkin S S P, More N and Roche K P 1990 Phys. Rev. Lett. 60 2304
  • 4[4]Petroff F, Barthelemy A, Mosca D H et al 1991 Phys. Rev. B 44 5353
  • 5[5]Yan M L, Lai W Y and Wang Y Z 1995 J. Appl. Phys. 74 1816Yu C T, Lai W Y, Yan M L et al 1995 Phys. Rev. B 52 1123
  • 6[6]Wang S F, Wang Z C and Zhou Z C 1998 Chin.Phys.Lett. 7 529
  • 7[7]Zhao T Y, Dan Z S, Shen B G and Zhao J G 1998 Chin.Phys.Lett. 7 613
  • 8[8]Gokemeijer N J, Ambrose T and Chien C L 1997 Phys. Rev. Lett. 79 4270
  • 9[9]Mewes T, Roos B F P, Demokritov S O and Hilebrands B 2000 J. Appl. Phys. 87 5064
  • 10[10]Thomas L, Kellock A J and Parkin S S P 2000 J. Appl. Phys. 87 5061

共引文献11

同被引文献60

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部