期刊文献+

融合AdaBoost和启发式特征搜索的人脸性别分类 被引量:7

Syncretize AdaBoost Learning and Heuristic Search to Select Features for Gender Classification of Frontal Facial Images
下载PDF
导出
摘要 提出一种基于AdaBoost的人脸性别分类方法,从一张低分辨率灰度人脸图像中辨认出一个人的性别。将启发式搜索算法融于AdaBoost算法框架中,从而发现新的可用于更好分类的特征。利用该方法进行人脸性别分类方面的实验,当使用少于500个像素比较时,正确识别率达到了93%以上,这与迄今已公布的最佳的分类器支持向量机(SVM)的正确识别率相当,但速度却快得多。 This paper presents a method based on AdaBoost to identify the sex of a person from a low resolution grayscale picture of their frontal facial images. A heuristic search algorithm is used within the AdaBoost framework to find new features providing better classifiers, The experiment~ result of gender classification with the method presented in this paper indicate that the method is extremely last and achieves over 93% accuracy with less than 500 pixel comparisons operations, these match the accuracies of the SVM-based classifiers which the best classifiers published to date,
作者 朱文球 刘强
出处 《计算机工程》 CAS CSCD 北大核心 2007年第2期171-173,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60373062) 湖南省自然科学基金资助项目(05JJ40101)
关键词 性别分类 ADABOOST 启发式搜索 Gender classification Adaboost Heuristic search
  • 相关文献

参考文献6

  • 1Paul V,Michael J.Robust Real-time Object Detection[C].Proceedings of the IEEE Workshop on Statistical and Computational Theories of Vision,2001.
  • 2Gutta S,Wechsler H,Phillips P J.Gender and Ethnic Classification[C].IEEE Int.Workshop on Automatic Face and Gesture Recognition,1998.
  • 3Moghaddam B,Yang M H.Learning Gender with Support Faces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5).
  • 4Baluja S,Sahami M,Rowley H.Efficient Face Orientation Discrimination[C].International Conference on Image Processing,2004.
  • 5Li S Z,Zhang Z Q,Shum H Y,et al.FloatBoost Learning for Classification[C].Proc.of Neural Information Processing Systems,2002-12.
  • 6武勃,艾海舟,肖习攀,徐光祐.人脸的性别分类[J].计算机研究与发展,2003,40(11):1546-1553. 被引量:16

二级参考文献14

  • 1B A Golomb, D T Lawrence, TJ Sejnowski. SEXNET: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems. San Mateo, CA, USA: Morgan Kaufrnann, 1991. 572-577.
  • 2G W Cottrell, J Metcalfe. EMPATH: Face, emotion, and gender recognition using holons. In: Advances in Neural Information Processing Systems. "San Mateo, CA, USA: Morgan Kanfmann,1991. 564-571.
  • 3B Edelman, D Valentin, H Abdi. Sex classification of face areas:How well can a linear neural network predict human performance.Journal of Biological System, 1998, 6(3) : 241 -264.
  • 4Alice J O'Toole et al. The perception of face gender: The role of stimulus structure in recognition and classification. Memory and Cognition, 1997, 26(1): 146-160.
  • 5Alice J O'Toole et al. The role of shape and texture information in sex classification. Max Planck Institute for Biological Cybernetics, Tubingen, Germany, Tech Rep: 23, 1995.
  • 6B Moghaddam, M H Yang. Gender classification with suppor tvector machines. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 707-711.
  • 7G Shakhnarovich, P Viola, B Moghaddam. A unified learning framework for real time face detection and classification. In: IEEE Conf on AFG. Washington DC, USA: IEEE Computer Society,2002.
  • 8R E Schapire. The boosting approach to machine learning an overview. In: MSRI Workshop on Nonlincar Estimation and Classification. Berkeley, CA, USA: Springer-Verlag, 2002.
  • 9Y Freund, R E Schapire. A decision-theoretic generalization of online learning and an application to boosting. In: Computational Learning Theory: Eurocolt'95 . Barcelona, Spain: Springer-Verlag, 1995. 23-37.
  • 10Y Freund, R E Schapire. Experiments with a new boosting algorithm. In: Proc of the 13th Int'l Conf on Machine Learning.Bari, Italy: Morgan Kaufmann, 1996. 148-156.

共引文献15

同被引文献53

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部