期刊文献+

移动对象数据库预测范围聚集查询技术研究

A Novel Prediction Technique for Range Aggregation of Moving Objects
下载PDF
导出
摘要 针对预测范围聚集查询处理技术,提出了一种面向移动对象的聚集TPR树索引。聚集TPR树索引在TPR树中间节点中加入移动对象聚集信息以减少预测范围聚集查询所需要的节点访问代价。并增加了一个建于移动对象标识上的哈希辅助索引结构以支持自底向上的删除搜索算法,具有很好的动态更新性能和并发性。提出了一种EPRA查询算法,采用更精确的剪枝搜索准则,大大减少了查询所需要访问的磁盘节点,具有良好的查询性能。 To efficiently process predictive range aggregate (pRA)queries, this paper presents a novel aggregate TPR- tree (aTPR-tree)for range aggregation of moving objects, aTPR-tree is based on TPR-tree structure and added with aggregate information in intermediate nodes to reduce the disk accesses of PRA queries, aTPR-tree is supplemented by a hash. index on identifier of moving objects, and uses bottom-up delete algorithm, thus having a good update performance and concurrency. Also an Enhanced predictive range aggregate (EPRA)query algorithm which uses a more precise branch and bound searching strategy is developed, thus reducing the disk I/O greatly and having a good performance.
出处 《计算机科学》 CSCD 北大核心 2007年第1期84-87,共4页 Computer Science
基金 国家高技术研究发展计划863资助 项目编号:2003A5110
关键词 预测范围 聚集查询 TPR-树 aTPR-树 EPRA算法 Predictive range, Aggregate queries, TPR-tree, aTPR-tree, EPRA algorithm
  • 相关文献

参考文献7

  • 1Lo'pez I F V,Snodgrass R T.Spatiotemporal Aggregate Computation:A Survey.In:IEEE TKDE,2005(2):271~286
  • 2Saltenis S,Jensen C S,et al.Indexing the Positions of Continuously Moving Objects.In:Proc.of the SIGMOD,2000
  • 3Tao Y,Papadias D,Sun J.The TPR* -Tree:An Optimized Spatio-Temporal Access Method for Predictive Queries.In:VLDB,2003.790~801
  • 4Prabhakar S,Xia Y,Kalashnikov D V,et al.Query Indexing and Velocity Constrained Indexing:Scalable Techniques for Continuous Queries on Moving Objects.IEEE Transactions on Computers,2002
  • 5Tao Yufei,Papadias D,Zhai Jian,et al.Venn Sampling:A Novel Prediction Technique for Moving Objects.In:Proc.ICDE,2005
  • 6Tao Yufei,Sun Jimeng,Papadias D.Selectivity Estimation for Predictive Spatio-Temporal Queries.In:Proc.ICDE,2003
  • 7Sun Jimeng,Papadias D,Tao Y,et al.Querying about the Past,the Present,and the Future in Spatio-Temporal Databases.In:VLDB,2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部