期刊文献+

一个数据膨胀率为1的概率公钥密码系统 被引量:5

A Probabilistic Public Key Cryptosystem with a Message Expansion of 1
下载PDF
导出
摘要 在RSA公钥密码的基础上,采用时间戳和hash函数技术,并利用以Blum数为模的二次同余式中求平方根的不可计算性,设计了一个概率公钥密码系统,此密码系统的密码强度不低于RSA的密码强度和求以Blum数为模的二次同余式平方根的难度,加、解密的时间复杂度为O(k3),其中k为模数的长度,密码的数据膨胀率等于1,因此在数据膨胀率上,此概率公钥密码系统是最优的。 Based on the RSA public key cryptosystem, a probabilistic public key cryptosystem is proposed, using the techniques of time stamp and hash function. The new scheme makes use of the intractability of solving the square roots in quadratic congruence equation with a Blum integer modulus, whose cipher intensity is no lower than that of RSA scheme and of the difficulty of solving the square root in quadratic congruence equation. In our scheme encoding and de coding requires O(k^3) operation, where k is the length of modulus. And the message expansion is 1, so the scheme is optimal in the message expansion.
出处 《计算机科学》 CSCD 北大核心 2007年第1期117-119,共3页 Computer Science
基金 国家自然科学基金(60403027) 国家"八六三"高科技研究发展计划基金(301-1-3)资助
关键词 概率公钥密码系统 数据膨胀率 时间戳 二次同余 Probabilistic public key cryptosystem, Message expansion, Time stamp,Quadratic congruence
  • 相关文献

参考文献8

  • 1Goldwasser S,Micali S.Probabilistic encryption.Journal of Computer and System Sciences,1984,28(2):270~229
  • 2Blum M,Goldwasser S.An efficient probabilistic public-key encryption scheme which hides all partial information.Advances in Cryptology Procedings of CRYPTO'84 (LNCS196),1985.289~299
  • 3Park S J,Lee Bo Young,Won D H.A Probabilistic Encryption using very high Residuosi ty and Its Applications.Global Telecommunications Conference.GLOBECOM'95.,IEEE.1995,2:1179~1182
  • 4Choi D H,Choi S,Won D.Improvement of Probbilistic Public Key Cryptosystems Using Discrete Logarithm.ICICS 2001,LNCS2288,2002.72~80
  • 5Katz J,Yung M.Characterization of Security Notions for Probabilistic Private-Key Encryption[EB/OL].J.Cryptology,SpringerVerlag,2005,DOI:10.1007/s00145-005-0310-8
  • 6Stalings W.Cryptography and Network Security.Thiryd ediootn,Pearson Education,Inc.,2003
  • 7Montgomery P L.Modular multiplication without trial sivision.Math.Comp.,1985,44(170):519~521
  • 8杨宁,董威,戎蒙恬.基于RSA系统的Montgomery算法的改进设计[J].通信技术,2003,36(2):87-88. 被引量:5

二级参考文献4

  • 1[1]Poldre J, Tammemae, Mandre M. Modular Exponent realization on FPGAs. www. pld. ttu. ee/ ~ prj/Tallinn_article. pdf
  • 2[2]K K C, Acar T, Kaliski B S, Jr. Analyzing And Comparing Montgomery Multiplication Algorithms IEEE Micro, 1996; 16(3): 26 ~ 33
  • 3[3]Lin Z. Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance, www. ee. princeton. edu/~ lzhong/ presentation/ele572final. pdf
  • 4[4]Li S, Zhou R, Ge Y. A 1024 -bit RSA crypto -coprocessor for smart cards ASIC, 2001. Proceedings. 4th International Conference on,2001:352 ~ 355

共引文献4

同被引文献30

  • 1余梅生,邹惠.一种改进的RSA公钥密码体制[J].大连理工大学学报,2003,43(z1):50-52. 被引量:8
  • 2王尚平.RSA-概率公钥密码体制[J].西安理工大学学报,1995,11(2):146-148. 被引量:1
  • 3王小云.广义GM概率公开钥密码体制的多项式安全性证明[J].通信学报,1996,17(5):35-40. 被引量:3
  • 4王滨,张远洋.一次性口令身份认证方案的分析与改进[J].计算机工程,2006,32(14):149-150. 被引量:20
  • 5Diffie W,Hellman M E.New Directions in Cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644-654.
  • 6Rivest R,Shamir A,Adleman L.A Method for Obtaining Digital Signatures and Public-key Cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
  • 7Blake I F,Seroussi G,Smart N P.Elliptic Curves in Cryptography[M].Cambridge,UK:Cambridge University Press,1999.
  • 8Su Shenghui,LüSuwang.A Public Key Cryptosystem Based on Three New Provable Problems[J].Theoretical Computer Science,2012,426-427:91-117.
  • 9Goldwasser S,Micali S.Probabilistic Encryption[J].Journal of Computer and System Sciences,1984,28(2):270-299.
  • 10Blum M,Goldwasser S.An Efficient Probabilistic Public Key Encryption Scheme Which Hides All Partial Information[C]//Proceedings of Cryptology-Crypto’84.[S.l.]:Springer-Verlag,1985:289-299.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部