期刊文献+

基于QP_TR信任域的序列图像目标跟踪 被引量:2

Tracing of Objects in Image Sequences Using QP_TR Trust Region Algorithm
下载PDF
导出
摘要 本文将信任域算法和尺度空间理论相结合,提出了一种能够精确描述目标尺寸连续变化的新的序列图像目标跟踪算法;将信任域算法与灰度模板相结合,提出了一种新的实时目标跟踪算法。在第一种算法中,首先将序列图像按照颜色直方图转换成目标概率分布图,目标区域在概率分布图中呈现为灰度块。然后通过检测该图在尺度空间中微分滤波器输出的极值,来决定这些灰度块的尺度。最后我们使用QP_TR信任域算法在尺度空间里和图像平面内快速搜索概率分布图的多尺度规范化Laplacian滤波函数极值,实现了目标定位并同时决定了其尺度,从而完成了跟踪任务。在第二种算法中,首先记录目标初始模板,在随后每一帧中应用QP—TR信任域算法搜索与该模板最相似的区域,实现目标定位。和现有算法的比较以及在大量真实序列图像上的实验表明,两种算法分别在目标大小描述,跟踪精度上以及运算速度上有了显著提高。 A new tracking framework based on the QP-TR trust region algorithm is proposed, in which two independent algorithms appropriate for different situations are demonstrated. In the first algorithm the constant changes of the target's size can be precisely described. For each incoming frame, a probability distribution image of the target is created, where the target's area turns into a blob. The scale of this blob can be determined based on local maxima of differential scale-space filters. We employ the QP-TR trust region algorithm to search the local maxima of multi-scale normalized Laplacian filter of the probability distribution image to locate the target as well as determine its scale. In the second algorithm, we combine the template matching with the QP_TR method and achieved the real time performance. In the presented tracking examples, the two algorithms demonstrate their great improvement on tracking precision and runtime performance respectively.
出处 《计算机科学》 CSCD 北大核心 2007年第1期191-194,共4页 Computer Science
基金 国防基础预研项目基金 航天创新基金和航空科学基金项目(No:02153073)
关键词 QP_TR信任域算法 尺度空间 多尺度规范化Laplacian滤波 实时目标跟踪 QP_ TR algorithm, Scale space, Multi-scale normalized laplaeian filter, Real-time tracking of objects
  • 相关文献

参考文献8

  • 1Comaniciu D,Ramesh V,Meer P.Kernel-Based Object Tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564~577
  • 2Berghen F V.Intermediate Report on the development of an optimization code for smooth,continuous objective functions when derivatives are not available.http://www.optimization-online.org/DB_HTML/2003/08/704.html
  • 3Comaniciu D,Ramesh V,Meer P.Real-Time Tracking of NonRigid Objects Using Mean Shift.IEEE Computer Vision and Pattern Recognition,2000,Ⅱ:142~149
  • 4Jia Jingping,Zhao Rongchun.Tracking of objects in image sequences using bandwidth matrix mean shift algorithm.In:the 7th International Conference on Signal Processing Proceedings,2004,2:918~921
  • 5Lindeberg T.Feature Detection with Automatic Scale Selection.International Journal of Computer Vision,1998,30(2):79~116
  • 6Liu Tyng-Luh,Chen Hwang-Tzong.Real-Time Tracking Using Trust-Region Methods.IEEE PAMI,2004,26(3):397~402
  • 7Bradski G R.Computer Vision Face Tracking for Use in a Perceptual User Interface.In:IEEE Workshop on Applications of Computer Vision,Princeton,NJ,1998.214~219
  • 8任金昌,张文哲,赵荣椿,冯大淦.一种基于自适应阈值的复杂背景下自动目标跟踪方法[J].计算机应用研究,2003,20(4):55-57. 被引量:8

二级参考文献4

共引文献7

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部