摘要
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.
基金
Project supported by the National Natural Science Foundation of China (Grant No 10374025), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004) and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No 03c543)