摘要
提出了一种新的演化算法——基于小生境的混合差分演化-模拟退火算法(NDESA算法),分析了构造NDESA算法的合理性。并且结合典型多峰值测试函数——Shubert函数的求解试验,说明NDESA算法能够高效地、快速地找到具有多个全局最优值点的多峰函数的所有全局最优值点,且参数的选择不必很严格,是一种较好地求解多峰值函数的所有最优值点的方法。还通过实验说明了结合小生境,差分演化和模拟退火算法这三种策略的必要性。
A new evolutionary algorithm,coupling differential evolution and simulated annealing algorithm based on niche,is proposed in this paper.The rationality to construct the proposed algorithm is discussed.Shubert function,a representative muhimodal optimization problem,is used to verify the algorithm.The results show that the proposed algorithm can find all global optimum points quickly without strict request for parameters,so it is a good approach to find all global optimum points for multimodal functions.In addition,the necessity to combine three schemes,niche,differential evolution and simulated annealing algorithm,is also validated by several numerical experiments.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第2期105-107,共3页
Computer Engineering and Applications
基金
国家973重点基础前期研究发展规划资助项目(2004CCA02500)
国家自然科学基金资助项目(60572015)
孝感学院杰出青年项目资助项目(Z2007026)。
关键词
差分演化
模拟退火
小生境
多峰函数优化
differential evolution
simulated annealing
niche
multimodal function optimization