期刊文献+

基于小生境的混合差分演化模拟退火算法 被引量:15

Coupling differential evolutionary and simulated annealing algorithm based on niche
下载PDF
导出
摘要 提出了一种新的演化算法——基于小生境的混合差分演化-模拟退火算法(NDESA算法),分析了构造NDESA算法的合理性。并且结合典型多峰值测试函数——Shubert函数的求解试验,说明NDESA算法能够高效地、快速地找到具有多个全局最优值点的多峰函数的所有全局最优值点,且参数的选择不必很严格,是一种较好地求解多峰值函数的所有最优值点的方法。还通过实验说明了结合小生境,差分演化和模拟退火算法这三种策略的必要性。 A new evolutionary algorithm,coupling differential evolution and simulated annealing algorithm based on niche,is proposed in this paper.The rationality to construct the proposed algorithm is discussed.Shubert function,a representative muhimodal optimization problem,is used to verify the algorithm.The results show that the proposed algorithm can find all global optimum points quickly without strict request for parameters,so it is a good approach to find all global optimum points for multimodal functions.In addition,the necessity to combine three schemes,niche,differential evolution and simulated annealing algorithm,is also validated by several numerical experiments.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第2期105-107,共3页 Computer Engineering and Applications
基金 国家973重点基础前期研究发展规划资助项目(2004CCA02500) 国家自然科学基金资助项目(60572015) 孝感学院杰出青年项目资助项目(Z2007026)。
关键词 差分演化 模拟退火 小生境 多峰函数优化 differential evolution simulated annealing niche multimodal function optimization
  • 相关文献

参考文献8

  • 1Li M,Zeng M,Shi C Z,et al.Fiber Bragg grating distributed strain sensing:an adaptive simulated annealing algorithm approach[J].Optics & Laser Technology,2005,37(6):454-457.
  • 2Rachid C,Patrick S.Genetic and Nelder&Mead algorithms hybridized for a more accurate global optimization of continuous multi-minima functions[J].European Journal of Operational Research,2003,148 (2):335-348.
  • 3Price K.Dffferential evolution vs the functions of the 2nd ICEO[C]//Proc of the IEEE International Conference on Evolutionary Computation,1997.
  • 4Mayer D G,Kinghorn B P,Archer A A.Differential evolution-an easy and efficient evolutionary algorithm for model optimization[J].Agricultural Systems,2005,83(3):315-328.
  • 5Storn R,Price K.Minimizing the real functions of the ICEC'96contest by differential evolution[C]//Proc of the IEEE International Conference on Evolutionary Computation,1996.
  • 6冯毅,李利,高艳明,田树军.一种基于小生境的混合遗传退火算法[J].机械科学与技术,2004,23(12):1494-1498. 被引量:15
  • 7Varadharajan T K,Chandrasekharan R.A multi-objective simulated-annealing algorithm for scheduling in flow shops to minimize the makespan and total MD of jobs[J].European Journal of OperationalResearch,2005,167(3):772-795.
  • 8Soowhan H,Pedrycz W,Changwook H.Nonlinear channel blind equalization using hybrid genetic algorithm with simulated annealing[J].Mathematical and Computer Modeling,2005,41(3/4):697-709.

二级参考文献2

  • 1Davis L. Genetic Algorithms and Simulated Annealing[M]. Los Altos:Morgan Kaufmann Publishers,1987
  • 2Antonio G, Lowther D A. Some aspects of niching genetic algorithms applied to electromagnetic device optimization[J]. IEEE Transactions on Magnetics, 2000,36(4):1076-1079

共引文献14

同被引文献136

引证文献15

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部