期刊文献+

基于微粒群算法的城市公交线网模型研究 被引量:3

Research on Urban Bus Path Model Based on Particle Swarm Optimization
下载PDF
导出
摘要 微粒群算法是求解组合优化问题的一种新的群体智能进化算法,从城市公交乘客选择出行路径的决策因素出发,以微粒群算法进化机理为核心,结合微粒群进化算法中的局部搜索与全局搜索同时进行的优点和运筹学旅行商组合优化理论,系统地建立了规划城市智能交通公交线网最短路径的数学模型进化算法,并通过MATLAB 7.0进行了实例仿真,得到了城市公交线网出行选择模型中总运输里程权重最短的优化目标。仿真结果也表明,该进化算法模型是解决城市公交线网规划的有效方法。 Particle swarm optimization is a new swarm intelligence algorithm to find the solution to the oPtimal combination problem. Based on the bus passengers' selecting the travel path and particle swarm optimization theory, and combined the excellence of overall and partial searching in particle swarm optimization and the traveling salesman problem of operational research, a mathematical model for bus travel transit path of urban intelligent traffic is systematically put forward, tt reaches the optimal goals of bus travel path selection by simulating an example with the help of MATLAB 7.0, At the same time, simulation results also testify the effectiveness for the proposed algorithm to solve the urban bus path planning.
出处 《计算机应用研究》 CSCD 北大核心 2007年第1期131-132,147,共3页 Application Research of Computers
关键词 微粒群算法 公交线网 组合优化 最短路径 仿真 Particle Swarm Optimization Bus Path Optimal Combination Shortest Path Simulation
  • 相关文献

参考文献6

  • 1李文勇,王炜,陈学武.公交出行路径蚂蚁算法[J].交通运输工程学报,2004,4(4):102-105. 被引量:27
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of the IEEE International Conference on Neural Networks,Piscataway:IEEE Service Center,1995.1942-1948.
  • 3Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[C].Proceedings of the IEEE International Conference on Evolutionary Computation,Piscataway:IEEE Press,1998.69-73.
  • 4Kang-ping Wang,Lan Huang,Chun-guang Zhou,et al.Particle Swarm Optimization for Traveling Salesman Problem[C].Xi'an:Proceedings of the 2nd International Conference on Machine Learning and Cybernetics,2003.1583-1585.
  • 5Clerc M.Discrete Particle Swarm Optimization Illustrated by the Traveling Salesman Problem[EB/OL].http://www.mauriceclerc.net,2000.86-123.
  • 6肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统,2005,11(4):577-581. 被引量:49

二级参考文献11

  • 1[2]Dorigo M,Gambardella L M.Ant colony system: a cooperative learning approach to the travelling salesman problem[J].IEEE Transaction,1997,1(1):53-66.
  • 2[4]唐策善,黄刘生.数据结构[M].北京:高等教育出版社,2001.
  • 3[5]杨新苗.城市公交优先发展的关键技术研究[D].南京:东南大学,2001.
  • 4EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory [A]. Proceeding of Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, NJ, USA: IEEE Service Center, 1995. 39-43.
  • 5LI Junjun, WANG Xihuai. A modified particle swarm optimization algorithm [A]. Proceedings of the 5th World Congress on Intelligent Control and Automation [C]. Piscataway, NJ,USA: IEEE Service Center, 2004. 354-356.
  • 6WANG Xihuai, LI Junjun. Hybrid particle swarm optimization with simulated annealing [A]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics[C]. Piscataway, NJ, USA: IEEE Service Center, 2004.2402-2405.
  • 7DANTZING G, RAMSER J. The truck dispatching problem [J]. Management Science, 1959, 10(6): 80-91.
  • 8CLARKE G, WRIGHT J. Scheduling of vehicles from a central depot to number of delivery points [J]. Operations Research, 1964, 12(4): 12-18.
  • 9李军,谢秉磊,郭耀煌.非满载车辆调度问题的遗传算法[J].系统工程理论方法应用,2000,9(3):235-239. 被引量:110
  • 10张丽萍,柴跃廷,曹瑞.有时间窗车辆路径问题的改进遗传算法[J].计算机集成制造系统-CIMS,2002,8(6):451-454. 被引量:54

共引文献74

同被引文献33

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部