期刊文献+

带梯度吸收项的快扩散方程的自相似奇性解

Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms
下载PDF
导出
摘要 研究一类带有非线性梯度吸收项的快速扩散方程的自相似奇性解.通过自相似变换,该自相似奇性解满足一个非线性常微分方程的边值问题,再利用打靶法技巧研究该常微分方程初值问题解的存在唯一性并根据初值的取值范围对其解进行了分类.通过对这些解类的性质的分析研究,得出了自相似强奇性解存在唯一性的充分必要条件,此时自相似奇性解就是强奇性解. The self-similar singular solution of the fast diffusion equation with nonlinear gradient absorption terms had been studied. By a self-similar transformation, the self-similar solutions satisfy a boundary value problem of nonlinear ODE. Using the shooting arguments, the existence and uniqueness of the solution to the initial data problem of the nonlinear ODE had been investigated, the solutions are classified by the region of the initial data. The necessary and sufficient condition for the existence and solutions. In case of existence, the self-similar singular solution is very singular solution.
机构地区 东南大学数学系
出处 《应用数学和力学》 EI CSCD 北大核心 2007年第1期99-106,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10471022) 教育部科学技术基金(重点)资助项目(104090)
关键词 快扩散方程 梯度吸收 自相似奇性解 强奇性解 fast diffusion equation gradient absorption self-similar singular solution very singular solution
  • 相关文献

参考文献14

  • 1Kardar M,Parisi G,Zhang Y C.Dynamic scaling of growing interface[J].Phys Rev Lett,1986,56 (9):889-892.
  • 2Krug J,Spohn H.Universisality classes for deterministic surface growth[J].Phys Rev A,1988,38(8):4271-4283.
  • 3Bebachour S,Laurencot Ph.Very singular solutions to a nonliear parabolic equation with absorption.I.Existence[J].Proc the Royal Soc Edinberg,2001,131(A) (1):27-44.
  • 4QI Yuan-wei,WANG Ming-xin.The self-similar profiles of generalized KPZ equation[J].Pacific J of Math,2001,201(1):223-240.
  • 5Brezis H,Friedman A.Nonlinear parabolic equation involving measures as initial conditions[J].J Math Pures Appl,1983,62(1):73-97.
  • 6Brezis H,Peletier L A,Terman D.A very singular solution of the heat equation with absorption[J].Arch Rational Mech Anal,1986,95(3):185-209.
  • 7CHEN Xin-fu,QI Yuan-wei,WANG Ming-xin.Self-similar singular solution of a p-Laplacian evolution[J].J Differential Equations,2003,190(1):1-15.
  • 8Kamin S,Vazquez J L.Singular solutions of some nonlinear parabolic equation[J].J Anal Math,1992,59(1):51-74.
  • 9Leoni G.A very singular solution for the porous media equation ut = △ (u^m)-u^p when 0<m<1[J].J Diff Eqns,1996,132(2):353-376.
  • 10Peletier L A,WANG Jun-yu.A very singular solution of a quasilinear degenerate diffusion equation with absorption[J].Trans Amer Math Soc,1988,307(2):813-826.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部