摘要
针对Funar猜想:“设任意三角形位于闭单位正方形内,则该三角形的内切圆半径,r≤(5-1)/4”,研究了与其等价的某二元函数的最小值问题;利用对此二元函数驻点及其取值、边界取值讨论,证明了等价问题成立,进而此Funar猜想得证。
In allusion to Funar Conjecture ."If a random triangle lies in a closed unit square, then its inscribed circle's radius, r≤(√5-)/4, an equivalent minimum problem about a function of 2-variables is studied; the stagnation point and its value, value on the boundary of the function of 2-variables are stud- ied, the equivalent problem is proved correct, so the Funar Conjecture is proved correct.
出处
《青岛大学学报(自然科学版)》
CAS
2006年第4期8-12,共5页
Journal of Qingdao University(Natural Science Edition)
关键词
Funar猜想
三角形的内切圆半径
二元函数
最大(最小)值问题
驻点
Funar conjecture
radius of inscribed circle of triangle
function of 2- variables
maximum (minimum) problem
stagnation point