期刊文献+

广义超立方体网络的容错路由分析 被引量:1

Analysis of routings for fault in generalized hypercube
下载PDF
导出
摘要 讨论了广义超立方体网络的容错路由问题。并在此基础上证明了当无效点很多时,只要存在某个(n-1)-维广立方体中无效节点不超过两个,则该n-维广义超立方体中的任意两个有效节点x和y之间的有效路由长度区间为[H(x,y),O(x,y)+4]。这里H(x,y)表示x到y的汉明距离,O(x,y)表示x到y的最优距离。 In this paper, the issue of fault-tolerance mutes is discussed in n-dimension generalized hypercube networks. Based on this, when there are many faulty nodes, there is a feasible route whose length band is [ H ( x, y), O( x, y) + 4] between any two notes x and y, if there exists less than two faulty nodes in one of the ( n - 1 )-dimension generalized hypereubes. Here H( x, y) denotes Hamming distance and O ( x, y ) denotes optimum distance.
出处 《山东轻工业学院学报(自然科学版)》 CAS 2006年第4期34-38,共5页 Journal of Shandong Polytechnic University
基金 三峡大学科研基金资助项目(604401)
关键词 广义超立方体 容错路由 汉明距离 内点不交 最优路由 generalized hypercube fault-tolerance route hamming distance vertex-disjoint optimum route
  • 相关文献

参考文献8

  • 1Gu Q P,Peng Shietung.Linear time algorithms for fault tolerant routing in hypercubes and star Graphs[J].IEICE Trans INF.&SYST,1995,78(9):1171-1177.
  • 2Lee Tze Chiang,Hayes J P.A Fault-tolerant routing in hypercube computers[J].IEEE Trans.Comput.,1992,41 (19):1242-1256.
  • 3Chiu G M,Wu S P.A fault-tolerant routing strategy in hypercube multicomputers[J].IEEE Trans Comput,1996,45(2):1341-1346.
  • 4Yien S B,Raghavendra C S.Algorithms and bounds for shortest paths and diameter in faulty hyperchbes[J].IEEE Trans on Paralleland Distributed Systems,1993,4(6):713-718.
  • 5Tze Chiang Lee,J P Hays.A fault-tolerant communication scheme for hypercube computers[J].IEEE Trans Comput,1992,41 (19):1242 -1256.
  • 6刘焕平,杨义先.N-立方体中一类特殊差错分布的快速容错路由选择[J].哈尔滨师范大学自然科学学报,1997,13(4):31-36. 被引量:3
  • 7Xu J M.Topological Structure and Analysis of Interconnection Networks[M].Dordrecht/Boston/london:Kluwer Academic Publishers,2001.
  • 8Saad Y,Schultz M H.Topological Properties of Hypercubes[J].IEEE Trans on Comput,1988,37(7):867-872.

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部