期刊文献+

SOME MULTIPLIER THEOREMS FOR ANISOTROPIC HARDY SPACES——In Memory of Professor Yongsheng Sun 被引量:2

SOME MULTIPLIER THEOREMS FOR ANISOTROPIC HARDY SPACES——In Memory of Professor Yongsheng Sun
下载PDF
导出
摘要 Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n). Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).
出处 《Analysis in Theory and Applications》 2006年第4期339-352,共14页 分析理论与应用(英文刊)
基金 Supported by NSP of China (Grant No. 10571015) RFDP of China (Grant No. 20050027025).
关键词 anisotropic Hardy space anisotropic Herz space Fourier multiplier anisotropic Hardy space, anisotropic Herz space, Fourier multiplier
  • 相关文献

参考文献8

  • 1C. Fefferman,E. M. Stein.H p spaces of several variables[J].Acta Mathematica.1972(1)
  • 2Peetre,J.New Thoughts on Besov Spaces[].Duke Univ Math Ser.1976
  • 3Bownik,M.Anisotropic Hardy Spaces and Wavelets[].Mem Amer Math Soc.2003
  • 4Baernstein, A.,and Sawyer, E. T.Embedding and Multiplier Theorems for Hp(Rn)[].Mem Amer Math Soc.1985
  • 5Onneweer, C. W.,and Queck, T. S.On Hp(Rn)-muItipliers of Mixed-norm type[].Proc Amer Math Soc.1994
  • 6Calderon, A. -P.,and Torchinsky, A.Parabolic Maximal Functions Associated with a Distribution[].Advances in Math.1975
  • 7Calderon, A. -P.,and Torchinsky, A.Parabolic Maximal Functions Associated with a Distribution II[].Advances in Math.1977
  • 8Triebel,H.Theory of Function Spaces[].Monographs in Math No.1983

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部