期刊文献+

Support vector machine for prediction of siRNA silencing efficacy 被引量:2

基于支持向量机的siRNA降解效率预测(英文)
下载PDF
导出
摘要 In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (RNAi) effect is analyzed by a support vector machine (SVM) based algorithm relied on a basebase correlation (BBC) feature. The results show that the proposed algorithm has the highest area under curve (AUC) value (0. 73) of the receive operating characteristic (ROC) curve and the greatest r value (0. 43) of the Pearson's correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design. 为了辅助siRNA的设计,从已发表文献中共收集到573个siRNA的实验数据,使用基于统计学习理论的支持向量机(SVM)方法,提取了siRNA序列的碱基对关联性(BBC)特征,然后使用十倍交叉验证方法,对siRNA沉默目标基因的效率进行了预测.结果表明,基于支持向量机,选用多项式核作为核函数的算法具有最高的AUC值(0.73,ROC曲线图)和最高的r值(0.43,Pearson相关系数分析),优于以前基于打分的算法.结果说明,在以后的siRNA的设计中应该更多关注碱基之间的关联信息.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期501-504,共4页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No60671018,60121101)
  • 相关文献

参考文献10

  • 1Amarzguioui M,Prydz H.An algorithm for selection of functional siRNA sequences[].Biochemical and Biophysical Research Communications.2004
  • 2Nykanen A,Haley B,Zamore P.ATP requirements and small interfering RNA structure in the RNA interference pathway[].Cell.2001
  • 3Saetrom P,Snove O Jr.A comparison of siRNA efficacy predictors[].Biochemical and Biophysical Research Communications.2004
  • 4Setrom P,Sn ve O J.A comparison of siRNA efficacy predictors[].Biochemical and Biophysical Research Communications.2004
  • 5Reynolds A,Leake D,Boese Q,et al.Rational siRNA de- sign for RNA interference[].Nature Biotechnology.2004
  • 6Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Cae-norhabditis elegans[].Nature.1998
  • 7Egan J P.Signal detection theory and ROC analysis[]..1975
  • 8Ui-Tei K,Naito Y,Takahashi F,et al.Guidelines for the selection of highly effective siRNA sequences for mamma- lian and chick RNA interference[].Nucleic Acids Research.2004
  • 9Vapnik V N.The nature of statistical learning theory[]..1995
  • 10Zhi-Hua Liu Dian Jia Xiao Sun.Classifying Genomic Sequences by Sequence Feature Analysis[J].Genomics, Proteomics & Bioinformatics,2005,3(4):201-205. 被引量:1

二级参考文献10

  • 1[1]Basu,S.,et al.2003.Words in DNA sequences:some case studies based on their frequency statistics.J.Math.Biol.46:479-503.
  • 2[2]Sandberg,R.,et al.2003.Quantifying the speciesspecificity in genomic signatures,synonymous codon choice,amino acid usage and G+C content.Gene 311:35-42.
  • 3[3]Zhang,C.T.and Zhang,R.2004.A nucleotide composition constraint of genome sequences.Comput.Biol.Chem.28:149-153.
  • 4[4]Reinert,G.,et al.2000.Probabilistic and statistical properties of words:an overview.J.Comput.Biol.7:1-46.
  • 5[5]Karlin,S.and Burge,C.1995.Dinucleotide relative abundance extremes:a genomic signature.Trends Genet.11:283-290.
  • 6[6]Hogg,R.V.and Craig,A.T.1995.Introduction to Mathematical Statistics (fifth edition).Prentic-Hall,Englewood Cliffs,USA.
  • 7[7]Sandberg,R.,et al.2001.Capturing wholegenome characteristics in short sequences using a naive Bayesian classifier.Genome Res.11:1404-1409.
  • 8[8]Kirkpatrick,L.A.and Feeney,B.C.2003.A Simple Guide to SPSS for Windows for Versions 8.0,9.0,10.0,and 11.0 (revised edition).Wadsworth Publishing,Florence,USA.
  • 9[9]Arnaud,P.,et al.2000.SINE retroposons can be used in vivo as nucleation centers for de novo methylation.Mol.Cell.Biol.20:3434-3441.
  • 10[10].Lyon,M.F.2000.LINE-1 elements and X chromosome inactivation:a function for "junk" DNA? Proc.Natl.Acad.Sci.USA 97:6248-6249.

同被引文献25

  • 1陈家军,孙宗全,董念国,苏刚,刘超,刘金平,邓勇志.RNA干扰抑制MyD88表达对小鼠骨髓树突状细胞生物学活性的影响[J].细胞与分子免疫学杂志,2007,23(3):193-196. 被引量:14
  • 2Naka T, Fujimoto M, Tsutsui H,et al.Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol. 2005;87: 61-122.
  • 3Ilangumaran S, Ramanathan S,Rottapel R.Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol. 2004; 16(6):351-365.
  • 4Davey GM, Heath WR,Starr R. SOCSI: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens .2006; 67( 1 ): 1-9.
  • 5Fletcher J,Starr R. The role of suppressors of cytokine signalling in thymopoiesis and T cell activation. Int J Biochem Cell Biol. 2005; 37(9): 1774-1786.
  • 6Groner B, Lucks P, Borghouts C. The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol.2008; 19(4):341-350.
  • 7Croker BA, Kiu H, Nicholson SE.SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol.2008; 19(4): 414-422.
  • 8Hammond SM,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293-296.
  • 9Bernstein E,CaudyAA, Hammond SM,et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 ;409(6818):363-366.
  • 10Nishikura K A short primer on RNAi:RNA-directed RNA polymerase acts asa key. catalyst.Cell.2001; 107(4):415-418

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部