期刊文献+

关于多部图K_n(t)的{K_4-e,S_3}—强制分解

Mandatory Decompositions of Complete Multipartite Graph into K_4-e and S_3
下载PDF
导出
摘要 设n,t为正整数,以K_n(t)表示基于顶点集X=■X_i上的完全n部图。文章证明了(Kn(t),{K4-e,S3})—强制分解存在当且仅当n≥3且(n,t)≠(3,2)。 Let n and t be positive integers. We use notation K,(t) to denote the complete n-partite multigraph based on vertex set X= Ui-1^nXi. In this paper, we showed that a mandatory decompositions of complete multipartite graph into K4-e and S3 exist if and only ifn≥3 and (n,t)≠(3,2).
作者 赵彤
出处 《南通航运职业技术学院学报》 2006年第4期35-38,共4页 Journal of Nantong Vocational & Technical Shipping College
关键词 完全多部图 强制分解 加权构作 存在性 Complete multipartite graph Mandatory decomposition Weighted structure Existence
  • 相关文献

参考文献1

二级参考文献7

  • 1Bondy J A. Murty U S R. Graph Theory with Applications[M]. The Macmillan Press LTD, 1976.
  • 2Brouwer A E,Schrijver A,Hanani H. Group divisible designs with block size 4[J]. Discrete Math, 1997, (20): 1- 10.
  • 3Colbourn C J,Dinitz J H. The CRC Handbook of Combinatorial Designs[J]. CRC Press Inc. Boca Raton,Florida, 1996.
  • 4Hanani H,Ray- Chaudhuri D K, Wilson R M. On resolvable designs[J]. Discrete Math, 1972, (3):343- 357.
  • 5Hanani H. Balanced incomplete block designs and related designs[J]. Discrete Math, 1975, (11) :255 - 369.
  • 6Hoffman D G. G-designs of order n and index λ where G has 5 vertices or less[J]. Australasian journal of Combinatorics,1998, (18): 13 - 37.
  • 7Wilson R M. Constructions and uses of pairwise balanced designs[J]. Mathematisch Contre Tracts 55,Amsterdam, 1974,18 - 41.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部