摘要
对于不定方程组{x^2-2y^2=1 2y^2-3z^2=4和{x^2-2y^2=1 2y^2-5z^2=7证明了它们没有整数解.
This paper deals with the systems of diophantine equations{x^2-2y^2=1 2y^2-3z^2=4and{x^2-2y^2=1 2y^2-5z^2=7. It is proved that the integer solutions of these systems of diophantine equations don't exist.
出处
《玉林师范学院学报》
2006年第5期15-17,共3页
Journal of Yulin Normal University
关键词
不定方程组
PELL方程
整数解
the systems of diophantine equations
Pell's equation
integer solution