摘要
讨论四阶两点边值问题u(4)(x)=f(x,u(x)),x∈[0,1],u(0)=u(1)=u″(0)=u″(1)=0,其中f:[0,1]×R→R连续函数在不限制f(x,v)关于v的增长阶的情形下,用Leray-Schauder不动点定理得出其解存在性与惟一性.
The fourth-order two-point boundary value problem{u^(4)(x)=f(x,u(x)),x∈[0,1],u(0)=u(1)=u″(0)=u″(1)=0,discussed, where, f: [0, 1-] X R"→R is continuous, in the general case without restrication for growth condition, the existence and uniqueness of solutions are obtained by Leray-Schauder fixed theorem.
出处
《纺织高校基础科学学报》
CAS
2006年第4期334-336,共3页
Basic Sciences Journal of Textile Universities