摘要
对两类Bernstein型三角求和算子进行线性组合,构造了一个新的算子.证明了该算子在全实轴上一致收敛于任意以2π为周期的连续函数,并且得到了算子的最佳收敛阶,最后给出了算子的最高收敛阶.在收敛性方面,本文构造的新算子明显优于其他算子.
A new triangle summation operator is constructed through combining two classes of operators of Bemstein type linearly. It is proved that this operator converges to arbitrary continuous function with period on the whole axis. The best convergence order of the operator is obtained. Finally, the highest convergence order of the operator is carried out. On the aspect of convergence, the new operator constructed in this paper is superior to other operators.
出处
《吉林师范大学学报(自然科学版)》
2006年第4期1-4,共4页
Journal of Jilin Normal University:Natural Science Edition
基金
国家自然科学金资助项目(1027069)
烟台大学青年基金(SX04Z24)
关键词
Bernstein型三角求和算子
一致收敛
最佳收敛阶
triangle summation operator of Bemstein type
uniform convergence
the best approximation order